設(shè)一個(gè)扇形的半徑為3cm,圓心角為120°,用它做成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐的體積是
 
cm3
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))
專題:空間位置關(guān)系與距離
分析:利用圓錐的側(cè)面展開圖中扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng)可得底面半徑,進(jìn)而求出圓錐的高,代入圓錐體積公式,可得答案.
解答: 解:設(shè)此圓錐的底面半徑為r,由題意,得
2πr=
120
180
π×3
,
解得r=1cm.
故圓錐的高h(yuǎn)=
32-12
=2
2
cm,
∴圓錐的體積V=
1
3
πr2h
=
2
2
π
3
,
故答案為:1cm.
2
2
π
3
點(diǎn)評(píng):本題考查了圓錐的計(jì)算,圓錐的側(cè)面展開圖是一個(gè)扇形,此扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).本題就是把扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng)作為相等關(guān)系,列方程求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn與通項(xiàng)an滿足Sn=
1
2
-
1
2
an

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=
1
b1
+
1
b2
+
1
bn
,求T2014;
(3)若cn=an•f(an),求{cn}的前n項(xiàng)和Un

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=0,an+1=
3
+an
1-
3
an
,則a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在(2x-
2
2
9的展開式中第7項(xiàng)為672,則x的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)以下各組條件解三角形:
①A=60°,B=75°,c=1;
②a=5,b=10,A=15°;
③a=5,b=10,A=30°.
其中解不唯一的序號(hào)
 
.(若有請(qǐng)?zhí)钚蛱?hào),若沒有請(qǐng)?zhí)顭o).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A
-1   0
0     2
,B=
1   2
0   6
,則矩陣A-1B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線的漸近線方程為y=±
1
3
x,它的一個(gè)焦點(diǎn)是(
10
,0),則雙曲線的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的三邊長(zhǎng)分別為a、b、c,△ABC的面積為S,則△ABC的內(nèi)切圓半徑為r=
2S
a+b+c
,將此結(jié)論類比到空間四面體:設(shè)四面體S-ABCD的四個(gè)面的面積分別為S1,S2,S3,S4,體積為V,則四面體的內(nèi)切球半徑r=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若從1,2,3,…,9這9個(gè)整數(shù)中同時(shí)取4個(gè)不同的數(shù),其和為偶數(shù),則不同的取法共有
 

查看答案和解析>>

同步練習(xí)冊(cè)答案