已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(1)求實數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程在區(qū)間(0,2)有兩個不等實根,求實數(shù)b的取值范圍.
【答案】分析:(1)由函數(shù)f(x在x=0處取得極值,則有f'(x)=0,從而求解;
(2)由由f'(x)>0得增區(qū)間;由f'(x)<0得減區(qū)間;
(3)將方程轉(zhuǎn)化為,利用根的分布求解.
解答:解:(1)由已知得=,
∵f'(x)=0∴
(2)由(1)得=
由f'(x)>0得-1<x<0,由f'(x)<0得x>0,
∴f(x)的單調(diào)遞增區(qū)間為(-1,0),單調(diào)遞減區(qū)間為(0,+∞);
(3)令=
=,
令g'(x)=0得x=1或x=-(舍),
當0<x<1時g'(x)>0,
當1<x<2時g'(x)<0即g(x)在(0,1)上遞增,在(1,2)上遞減,
方程在區(qū)間(0,2)上有兩個不等實根等價于函數(shù)g(x)在(0,2)上有兩個不同的零點.

(13分)
即實數(shù)b的取值范圍為(14分)
點評:本題主要考查導(dǎo)數(shù)法研究極值,單調(diào)性以及用函數(shù)解決方程根的分布問題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案