已知函數(shù)f(x)=(ax2+bx+c)ex且f(0)=1,f(1)=0.
(I)若f(x)在區(qū)間[0,1]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(II)當(dāng)a=0時(shí),是否存在實(shí)數(shù)m使不等式2f(x)+4xex≥mx+1≥-x2+4x+1對任意x∈R恒成立?若存在,求出m的值,若不存在,請說明理由.
【答案】分析:(1)由題意,函數(shù)f(x)=(ax2+bx+c)ex在[0,1]上單調(diào)遞減且滿足f(0)=1,f(1)=0,可求出函數(shù)的導(dǎo)數(shù),將函數(shù)在[0,1]上單調(diào)遞減轉(zhuǎn)化為導(dǎo)數(shù)在[0,1]上的函數(shù)值恒小于等于0,再結(jié)合f(0)=1,f(1)=0這兩個方程即可求得a取值范圍;
(II)當(dāng)a=0時(shí),若mx+1≥-x2+4x+1得,由二次函數(shù)知識求得m=4,在證明當(dāng)m=4時(shí),2f(x)+4xex≥mx+1對任意x∈R恒成立,g(x)=(2x+2)ex-4x-1,只需g(x)>0即可.
解答:解:(1)由f(0)=1,f(1)=0得c=1,a+b=-1,則f(x)=[ax2-(a+1)x+1]ex,
∴f′(x)=[ax2+(a-1)x-a]ex,
由題意函數(shù)f(x)=(ax2+bx+c)ex在[0,1]上單調(diào)遞減可得對于任意的x∈(0,1),都有f′(x)<0
當(dāng)a>0時(shí),因?yàn)槎魏瘮?shù)y=ax2+(a-1)x-a圖象開口向上,而f′(0)=-a<0,所以只需要f′(1)=(a-1)e<0,即a<1,故有0<a<1;
當(dāng)a=1時(shí),對于任意的x∈(0,1),都有f′(x)=(x2-1)ex<0,函數(shù)符合條件;
當(dāng)a=0時(shí),對于任意的x∈(0,1),都有f′(x)=-xex<0,函數(shù)符合條件;
當(dāng)a<0時(shí),因f′(0)=-a>0函數(shù)不符合條件;
綜上知,a的取值范圍是0≤a≤1

(II)當(dāng)a=0時(shí),f(x)=(1-x)ex,假設(shè)存在實(shí)數(shù)m使不等式2f(x)+4xex≥mx+1≥-x2+4x+1對任意x∈R恒成立,

由mx+1≥-x2+4x+1得,x2+(m-4)x≥0恒成立,∴△=(m-4)2≤0,∴m=4.
下面證明:當(dāng)m=4時(shí),2f(x)+4xex≥mx+1對任意x∈R恒成立,即(2x+2)ex≥4x+1對任意x∈R恒成立,
令g(x)=(2x+2)ex-4x-1,g′(x)=(2x+4)ex-4,∵g′(0)=0,
當(dāng)x>0時(shí),2x+4>4,ex>1,∴(2x+4)ex>4,g′(x)>0,g(x)在(0,+∞)上單調(diào)遞增,

當(dāng)x<0時(shí),2x+4<4,0<ex<1,∴(2x+4)ex<4,g′(x)<0,g(x)在(-∞0,)上單調(diào)遞減,

∴g(x)min=g(0)=1>0,∴g(x)>0,即(2x+2)ex≥4x+1對任意x∈R恒成立.

綜上所述,實(shí)數(shù)m=4使不等式2f(x)+4xex≥mx+1≥-x2+4x+1對任意x∈R恒成立.
點(diǎn)評:本題考查利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,此類題解題步驟一般是求導(dǎo),研究單調(diào)性,確定最值,求最值,解題的關(guān)鍵是把函數(shù)在閉區(qū)間上遞減轉(zhuǎn)化為函數(shù)的導(dǎo)數(shù)在此區(qū)間上小于等于0恒成立,將單調(diào)遞減的問題轉(zhuǎn)化為不等式恒成立是此類題常用的轉(zhuǎn)化思路,第二小題求恒成立參數(shù)的取值范圍,本題考查了轉(zhuǎn)化的思想,推理判斷的能力,計(jì)算量大,難度較大,極易因?yàn)榕袛嗖粶?zhǔn)轉(zhuǎn)化出錯或計(jì)算出錯,常作為高考的壓軸題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案