(08年遼寧卷理)在直角坐標(biāo)系中,點到兩點的距離之和為4,設(shè)點的軌跡為,直線與交于兩點.
⑴寫出的方程;
⑵若,求的值;
⑶若點在第一象限,證明:當(dāng)時,恒有.
說明:本小題主要考查平面向量,橢圓的定義、標(biāo)準(zhǔn)方程及直線與橢圓位置關(guān)系等基礎(chǔ)知識,考查綜合運(yùn)用解析幾何知識解決問題的能力.滿分12分.
解析:
(Ⅰ)設(shè)P(x,y),由橢圓定義可知,點P的軌跡C是以為焦點,長半軸為2的橢圓.它的短半軸,
故曲線C的方程為.?????????????????????????????????????????????????????????????????? 3分
(Ⅱ)設(shè),其坐標(biāo)滿足
消去y并整理得,
故.????????????????????????????????????????????????????????? 5分
若,即.
而,
于是,
化簡得,所以.???????????????????????????????????????????????????????????? 8分
(Ⅲ)
.
因為A在第一象限,故.由知,從而.又,
故,
即在題設(shè)條件下,恒有.??????????????????????????????????????????????????????????? 12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年遼寧卷理)在數(shù)列中,,且成等差數(shù)列,成等比數(shù)列.
⑴求及,由此猜測的通項公式,并證明你的結(jié)論;
⑵證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年遼寧卷理)在數(shù)列中,,且成等差數(shù)列,成等比數(shù)列.
⑴求及,由此猜測的通項公式,并證明你的結(jié)論;
⑵證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com