(08年遼寧卷理)在直角坐標(biāo)系中,點到兩點的距離之和為4,設(shè)點的軌跡為,直線交于兩點.

⑴寫出的方程;

⑵若,求的值;

⑶若點在第一象限,證明:當(dāng)時,恒有.

說明:本小題主要考查平面向量,橢圓的定義、標(biāo)準(zhǔn)方程及直線與橢圓位置關(guān)系等基礎(chǔ)知識,考查綜合運(yùn)用解析幾何知識解決問題的能力.滿分12分.

解析:

(Ⅰ)設(shè)Pxy),由橢圓定義可知,點P的軌跡C是以為焦點,長半軸為2的橢圓.它的短半軸

故曲線C的方程為.?????????????????????????????????????????????????????????????????? 3分

(Ⅱ)設(shè),其坐標(biāo)滿足

消去y并整理得

.????????????????????????????????????????????????????????? 5分

,即

于是,

化簡得,所以.???????????????????????????????????????????????????????????? 8分

(Ⅲ)

                 

                 

                 

因為A在第一象限,故.由,從而.又,

即在題設(shè)條件下,恒有.??????????????????????????????????????????????????????????? 12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年遼寧卷理)已知,且在區(qū)間有最小值,無最大值,則__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年遼寧卷理)在中,內(nèi)角對邊的邊長分別是.已知.

⑴若的面積等于,求;

⑵若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年遼寧卷理)在數(shù)列中,,且成等差數(shù)列,成等比數(shù)列.

⑴求,由此猜測的通項公式,并證明你的結(jié)論;

⑵證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年遼寧卷理)在數(shù)列中,,且成等差數(shù)列,成等比數(shù)列.

⑴求,由此猜測的通項公式,并證明你的結(jié)論;

⑵證明:.

查看答案和解析>>

同步練習(xí)冊答案