本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知矩陣M=
01
10
,N=
0-1
10

(Ⅰ)求矩陣NN;
(Ⅱ)若點P(0,1)在矩陣M對應的線性變換下得到點P′,求P′的坐標.
(2)選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,直線l的參數(shù)方程是
x=t
y=2t+1
(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的極坐標方程是ρ=2cosθ(Ⅰ)在直角坐標系xOy中,求圓C的直角坐標方程
(Ⅱ)求圓心C到直線l的距離.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|x-1|
(Ⅰ)解不等式f(x)>2;
(Ⅱ)求函數(shù)y=f(-x)+f(x+5)的最小值.
分析:(1)(Ⅰ)利用矩陣的乘法,可求矩陣NN;
(Ⅱ)設P′=(x,y),利用二階矩陣與平面列向量的乘法,可求P′的坐標;
(2)(Ⅰ)ρ=2cosθ可化為ρ2=2ρcosθ,即x2+y2=2x為圓C的直角坐標方程;
(Ⅱ)圓心C(1,0),直線l的普通方程為2x-y+1=0,利用點到直線的距離公式,可求圓心C到直線l的距離;
(3)(Ⅰ)利用絕對值的幾何意義,不等式|x-1|>2,可化為x-1>2或x-1<-2,從而可求原不等式的解集;
(Ⅱ)函數(shù)y=f(-x)+f(x+5)=|-x-1|+|x+4|≥|-x-1+x+4|=3,故可得函數(shù)y=f(-x)+f(x+5)的最小值.
解答:(1)解:(Ⅰ)MN=
01
10
0-1
10
=
10
0-1

(Ⅱ)設P′=(x,y),則
01
10
0
1
  =
x
y

所以,x=1,y=0,∴P′=(1,0)
(2)解:(Ⅰ)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,∴圓C的直角坐標方程為x2+y2=2x;
(Ⅱ)圓心C(1,0),直線l的普通方程為2x-y+1=0…(5分)∴圓心C到直線l的距離為d=
|2+1|
5
=
3
5
5
.…(7分)
(3)解:(Ⅰ)∵|x-1|>2
∴x-1>2或x-1<-2
∴x>3或x<-1
∴原不等式的解集為{x|x>3或x<-1}
(Ⅱ)函數(shù)y=f(-x)+f(x+5)=|-x-1|+|x+4|≥|-x-1+x+4|=3
∴函數(shù)y=f(-x)+f(x+5)的最小值為3
點評:本題考查矩陣與變換、考查直線與圓的極坐標與參數(shù)方程,極坐標方程、參數(shù)方程與直角坐標方程、普通方程的互化等基礎知識,考查絕對值不等式解法、最值求解等基礎知識,考查運算求解能力,化歸與轉化思想及數(shù)形結合思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,請考生任選2題作答.
(1)選修4-2:矩陣與變換
已知a,b∈R,若M=
-1a
b3
所對應的變換TM把直線L:2x-y=3變換為自身,求實數(shù)a,b,并求M的逆矩陣.
(2)選修4-4:坐標系與參數(shù)方程
已知直線l的參數(shù)方程:
x=t
y=1+2t
(t為參數(shù))和圓C的極坐標方程:ρ=2
2
sin(θ+
π
4
)

①將直線l的參數(shù)方程化為普通方程,圓C的極坐標方程化為直角坐標方程;
②判斷直線l和圓C的位置關系.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求實數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題有(1)、(2)、(3)三個選擇題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1).選修4-2:矩陣與變換
已知矩陣A=
1a
-1b
,A的一個特征值λ=2,其對應的特征向量是α1=
2
1

(Ⅰ)求矩陣A;
(Ⅱ)若向量β=
7
4
,計算A2β的值.

(2).選修4-4:坐標系與參數(shù)方程
已知橢圓C的極坐標方程為ρ2=
12
3cos2θ+4sin2θ
,點F1,F(xiàn)2為其左、右焦點,直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù),t∈R).求點F1,F(xiàn)2到直線l的距離之和.
(3).選修4-5:不等式選講
已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)選修4-2:矩陣與變換
已知矩陣A=
12
34

①求矩陣A的逆矩陣B;
②若直線l經(jīng)過矩陣B變換后的方程為y=x,求直線l的方程.
(2)選修4-4:坐標系與參數(shù)方程
已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合.圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(a為參數(shù)),點Q極坐標為(2,
7
4
π).
(Ⅰ)化圓C的參數(shù)方程為極坐標方程;
(Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
(3)選修4-5:不等式選講
(I)關于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
(II)設x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(Ⅰ)選修4-2:矩陣與變換,
已知矩陣A=
01
a0
,矩陣B=
02
b0
,直線l1
:x-y+4=0經(jīng)矩陣A所對應的變換得直線l2,直線l2又經(jīng)矩陣B所對應的變換得到直線l3:x+y+4=0,求直線l2的方程.
(Ⅱ)選修4-4:坐標系與參數(shù)方程,
求直線
x=-2+2t
y=-2t
被曲線
x=1+4cosθ
y=-1+4sinθ
截得的弦長.
(Ⅲ)選修4-5:不等式選講,解不等式|x+1|+|2x-4|>6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分
(1)已知矩陣M=
12
21
,β=
1
7
,(Ⅰ)求M-1;(Ⅱ)求矩陣M的特征值和對應的特征向量;(Ⅲ)計算M100β.
(2)曲線C的極坐標方程是ρ=1+cosθ,點A的極坐標是(2,0),求曲線C在它所在的平面內繞點A旋轉一周而形成的圖形的周長.
(3)已知a>0,求證:
a2+
1
a2
-
2
≥a+
1
a
-2

查看答案和解析>>

同步練習冊答案
关 闭