已知函數(shù)f(x)=x3-3ax2+2bx在x=1處有極小值-1.
(1)求函數(shù)f(x)的極大值和極小值;
(2)求函數(shù)f(x)在閉區(qū)間[-2,2]上的最大值和最小值.
【答案】
分析:(1)根據(jù)函數(shù)f(x)=x
3-3ax
2+2bx在x=1處有極小值-1先求出函數(shù)中的參數(shù)a,b的值,再令導(dǎo)數(shù)等于0,求出極值點,判斷極值點左右兩側(cè)導(dǎo)數(shù)的正負(fù),當(dāng)左正右負(fù)時有極大值,當(dāng)左負(fù)右正時有極小值.再代入原函數(shù)求出極大值和極小值.
(2)列表比較函數(shù)的極值與端點函數(shù)值的大小,端點函數(shù)值與極大值中最大的為函數(shù)的最大值,端點函數(shù)值與極小值中最小的為函數(shù)的最小值.
解答:解:(1)函數(shù)f(x)=x
3-3ax
2+2bx的導(dǎo)數(shù)為f′(x)=3x
2-6ax+2b
∵函數(shù)f(x)=x
3-3ax
2+2bx在x=1處有極小值-1,∴f′(1)=0,f(1)=-1
即3-6a+2b=0,1-3a+2b=-1,解得a=
,b=-
∴f(x)=x
3-x
2-x,f′(x)=3x
2-2x-1
令f′(x)=0,即3x
2-2x-1=0,解得,x=-
,或x=1
又∵當(dāng)x>1時,f′(x)>0,當(dāng)-
<x<1時,f′(x)<0,當(dāng)x<-
時,f′(x)>0,
∴函數(shù)在x=-
時有極大值為f(-
)=
函數(shù)在x=1時有極小值為f(1)=-1
(2)函數(shù)f(x)在閉區(qū)間[-2,2]上的f'(x)、f(x)的變化情況如下表:
x | -2 | (-2,-) | - | (-,1) | 1 | (1,2) | 2 |
f′(x) | | + | 0 | - | 0 | + | |
f(x) | -10 | 增 | | 減 | -1 | 增 | 2 |
∴當(dāng)x=2時函數(shù)有最大值為2,當(dāng)x=-2時,函數(shù)有最小值為-10
點評:本題主要考查函數(shù)的導(dǎo)數(shù)與極值,最值之間的關(guān)系,屬于導(dǎo)數(shù)的應(yīng)用.