(本題滿分11分)從1到9的九個數(shù)字中取三個偶數(shù)三個奇數(shù),組成沒有重復數(shù)字的6位數(shù)?試問:

(1)其中1在首位的有多少個?

(2)其中三個偶數(shù)字排在一起三個奇數(shù)字也排在一起的有多少個?

(3)其中任意兩偶然都不相鄰的六位數(shù)有多少個?

解:(1)分步完成:第一步在4個偶數(shù)中取3個,可有種情況;

第二步在除1以外的4個奇數(shù)中取2個,可有種情況;

第三步3個偶數(shù),3個奇數(shù)進行排列,其中1在首位的有種情況;

所以符合題意的七位數(shù)有個.…………………………………………3分

(2)其中3個偶數(shù)排在一起,3個奇數(shù)也排在一起的有個.…7分

(3)其中偶數(shù)字都不相鄰,可先把3個奇數(shù)排好,再將3個偶數(shù)分別插入4個空檔,

共有個.…………………………………………………………………11分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2012屆云南省高三上期中理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)第26屆世界大學生夏季運動會將于2011年11月12日到23日在深圳舉行 ,為了搞好接待工作,組委會在某學院招募了12名男志愿者和18名女志愿者。將這30名志愿者的身高編成如右所示的莖葉圖(單位:cm):若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下(不包括175cm)定義為“非高個子”,且只有“女高個子”才擔任“禮儀小姐”。

(1)如果用分層抽樣的方法從“高個子”和“非高個子”中中提取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少?

(2)若從所有“高個子”中選3名志愿者,用表示所選志愿者中能擔任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學期望。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省六校高三聯(lián)考數(shù)學理卷 題型:解答題

(本題滿分12分)

對甲、乙兩種商品的重量的誤差進行抽查,測得數(shù)據(jù)如下(單位:):

       甲:13  15  14  14  9  14  21  9   10  11

       乙:10  14  9  12  15  14  11  19  22  16

(1)畫出樣本數(shù)據(jù)的莖葉圖,并指出甲,乙兩種商品重量誤差的中位數(shù);

(2)計算甲種商品重量誤差的樣本方差;

(3)現(xiàn)從重量誤差不低于15的乙種商品中隨機抽取兩件,求重量誤差為19的商品被抽

中的概率。

 

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省2010屆高三第三次模擬考試數(shù)學(文)試卷 題型:解答題

(本題滿分12分)某學校課題組為了研究學生的數(shù)學成績與物理成績之間的關(guān)系,隨機抽取高二年級20名學生某次考試成績(滿分100分)如下表所示:

序號

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

數(shù)學

成績

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理

成績

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

 

 

若單科成績85分以上(含85分),則該科成績?yōu)閮?yōu)秀.

(1)根據(jù)上表完成下面的2×2列聯(lián)表(單位:人):

 

數(shù)學成績優(yōu)秀

數(shù)學成績不優(yōu)秀

合   計

物理成績優(yōu)秀

 

 

 

物理成績不優(yōu)秀

 

 

 

合   計

 

 

20

(2)根據(jù)題(1)中表格的數(shù)據(jù)計算,有多大的把握,認為學生的數(shù)學成績與物理成績之間有關(guān)系?

(3)若從這20個人中抽出1人來了解有關(guān)情況,求抽到的學生數(shù)學成績與物理成績至少有一門不優(yōu)秀的概率.

參考數(shù)據(jù)及公式:

①隨機變量,其中為樣本容量;

②獨立檢驗隨機變量的臨界值參考表:

0.010

0.005

0.001

6.635

7.879

10.828

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分11分)張先生家住H小區(qū),他在C科技園區(qū)工作,從家開車到公司上班有L1L2兩條路線(如圖),L1路線上有A1A2,A3三個路口,各路口遇到紅燈的概率均為;L2路線上有B1,B2兩個路口,各路口遇到紅燈的概率依次為,

(Ⅰ)若走L1路線,求最多遇到1次紅燈的概率;

(Ⅱ)若走L2路線,求遇到紅燈次數(shù)的數(shù)學期望;

(Ⅲ)按照“平均遇到紅燈次數(shù)最少”的要求,請你幫助張先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

查看答案和解析>>

同步練習冊答案