如圖,已知四棱錐P—ABCD中,底面ABCD是直角梯長,AB//CD,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1。
(1)求證:BC⊥平面PAC;
(2)若M是PC的中點(diǎn),求三棱錐M—ACD的體積。
(1)見解析;(2)
【解析】本試題主要是考查了立體幾何中線面垂直的判定定理和錐體體積公式的運(yùn)用。
(1)因?yàn)樵谥苯翘菪蜛BCD中,過C做于點(diǎn)E,則四邊形ADCE為矩形,關(guān)鍵是證明,得到線面垂直。
(2)是PC中點(diǎn)
到面ADC的距離是P到面ADC距離的一半,從而得到高度,結(jié)合底面積得到體積。
解:(1)證明:在直角梯形ABCD中,過C做于點(diǎn)E,則四邊形ADCE為矩形
…3分
…………4分
…………6分
又平面ABCD,……7分
,平面APC…………9分
(2)是PC中點(diǎn)
到面ADC的距離是P到面ADC距離的一半…………10分
…………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
8
| ||
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
PN |
1 |
2 |
NC |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com