已知數(shù)列{an}等差數(shù)列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,則a4=( 。
分析:由等差數(shù)列得性質(zhì)可得:5a5=10,即a5=2.同理可得5a6=20,a6=4,再由等差中項(xiàng)可知:a4=2a5-a6=0
解答:解:由等差數(shù)列得性質(zhì)可得:a1+a9=a3+a7=2a5,又a1+a3+a5+a7+a9=10,
故5a5=10,即a5=2.同理可得5a6=20,a6=4.
再由等差中項(xiàng)可知:a4=2a5-a6=0 
故選B
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì)及等差中項(xiàng),熟練利用性質(zhì)是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且an是Sn與2的等差中項(xiàng),
(1)求a1,a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且an是Sn與2的等差中項(xiàng),數(shù)列{bn}為首項(xiàng)為1,公差為1的等差數(shù)列
(1)求a1及an,bn
(2)記cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且an是Sn與2的等差中項(xiàng),數(shù)列{bn}滿(mǎn)足b1=2,點(diǎn)P(bn,bn+1)(n∈N*)在直線(xiàn)y=x+2上,
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足an+1=2an,且a3+2是a2,a4的等差中項(xiàng).
①求數(shù)列{an}的通項(xiàng)公式;
②若bn=anlog
12
an
,Sn=b1+b2+b3+…bn,求使Sn+n•2n+1>50成立的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,前n項(xiàng)和sn滿(mǎn)足sn+1-sn=2n+1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和sn
(Ⅱ)若S1、t(S3+S4)(t>0)的等差中項(xiàng)不大于它們的等比中項(xiàng),求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案