如題(15)圖,圖中的實(shí)線(xiàn)是由三段圓弧連接而成的一條封閉曲線(xiàn),各段弧所在的圓經(jīng)過(guò)同一點(diǎn)(點(diǎn)不在上)且半徑相等. 設(shè)第段弧所對(duì)的圓心角為,則____________ .

解:
可令同過(guò)P點(diǎn)的三圓的交點(diǎn)分別是A,B,C,連接PA,PB,PC,可得得出∠APB+∠APC+∠BPC=2π
因?yàn)樵诟鱾(gè)圓的半徑相等,故此三角的大小皆為2π /3由于在圓中同弦所對(duì)的圓周角互補(bǔ),故在各個(gè)圓中,AB,BC,CA所與三角相對(duì)的圓周角為π /3
故AB,BC,CA所對(duì)的圓心角是2π/ 3 ,
又α123=4π,所以cos(α 1 2 3 / 3 )="-1" /2 .
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若方程x2y2xym=0表示圓,則實(shí)數(shù)m的取值范圍為(   )
A.mB.m<0C.mD.m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知圓的圓心是雙曲線(xiàn)的一個(gè)焦點(diǎn),則此雙曲線(xiàn)的漸近線(xiàn)方程為               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩點(diǎn),動(dòng)點(diǎn)不在軸上,且滿(mǎn)足其中為原點(diǎn),則點(diǎn)的軌跡方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若直角的內(nèi)切圓與斜邊相切于點(diǎn),且,則的面積為_(kāi)________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.已知直線(xiàn)的參數(shù)方程是(t是參數(shù))圓C的極坐標(biāo)方程為.
(1)求圓C在直角坐標(biāo)系下的方程;
(2)由直線(xiàn)上的點(diǎn)向圓引切線(xiàn),求切線(xiàn)長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知圓C與圓(x-1)2+y2=1關(guān)于直線(xiàn)y=-x對(duì)稱(chēng),則圓C的方程(    )
A.(x+1)2+y2="1"B.x2+y2="1"C.x2+(y+1)2="1"D.x2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分16分)已知點(diǎn)在雙曲線(xiàn)上,圓C:與雙曲線(xiàn)M的一條漸近線(xiàn)相切于點(diǎn)(1,2),且圓C被x軸截得的弦長(zhǎng)為4.(Ⅰ)求雙曲線(xiàn)M的方程;(Ⅱ)求圓C的方程;(Ⅲ)過(guò)圓C內(nèi)一定點(diǎn)Q(s,t)(不同于點(diǎn)C)任作一條直線(xiàn)與圓C相交于點(diǎn)A、B,以A、B為切點(diǎn)分別作圓C的切線(xiàn)PA、PB,求證:點(diǎn)P在定直線(xiàn)l上,并求出直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖4所示,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3,過(guò)C作圓的切線(xiàn)l,過(guò)Al的垂線(xiàn)AD,垂足為D,則∠DAC =(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案