計(jì)算:
(1)
6
1
4
-
33
3
8
+
30.125

(2)(lg5)2+lg2•lg50.
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì),根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡(jiǎn)運(yùn)算
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用指數(shù)冪的運(yùn)算法則即可得出;
(2)利用對(duì)數(shù)的運(yùn)算法則及l(fā)g2+lg5=1即可得出.
解答: 解:(1)原式=
(
5
2
)2
-
3(
3
2
)3
+
3(
1
2
)3

=
5
2
-
3
2
+
1
2
=
3
2

(2)原式=lg25+lg2(lg5+1)
=lg5(lg5+lg2)+lg2
=lg5+lg2
=1.
點(diǎn)評(píng):本題考查了指數(shù)冪的運(yùn)算法則、對(duì)數(shù)的運(yùn)算法則及l(fā)g2+lg5=1,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)(1+tan2α)cos2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是一次函數(shù),若f(0)=1,f(2x)=f(x)+x,則f(x)=(  )
A、2x+1B、x+1
C、xD、2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=2kx2-2x-3k-2,x∈[-5,5],求實(shí)數(shù)k的取值范圍,使y=f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)角θ為第四象限角,并且角θ的終邊與單位圓交于點(diǎn)P(x0,y0),若x0+y0=-
1
3
,則cos2θ=( 。
A、-
8
9
B、±
8
9
C、±
17
9
D、-
17
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x=a2+1,a∈N+且x≤10},B={y|y=a2-2a+2,a∈N+且y≤10},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(
π
2
+x)cos(
π
2
-x)+cosxcos(π-x)
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈[-
π
4
,
π
4
]時(shí),求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x),g(x)滿足
f(x)
g(x)
=ax
,且f′(x)g(x)>f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
.若有窮數(shù)列{
f(n)
g(n)
}
的前n項(xiàng)和為Sn,則滿足不等式Sn>2015的最小正整數(shù)n等于(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①命題?x2>1,x>1的否定是?x2≤1,x≤1;
②函數(shù)f(x)=
ax-1
ax+1
(a>0且a≠1)
在R上單調(diào)遞減;
③設(shè)f(x)是R上的任意函數(shù),則f(x)+f(-x)是偶函數(shù);
④定義在R上的函數(shù)f(x)對(duì)于任意x的都有f(x-2)=-
4
f(x)
,則f(x)為周期函數(shù);
⑤已知冪函數(shù)f(x)=xα的圖象經(jīng)過(guò)點(diǎn)(2,
2
2
)
,則f(4)的值等于
1
2

其中真命題的序號(hào)是
 
(把所有真命題的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案