[2014·太原模擬]在等差數(shù)列{an}中,a1>0,公差d<0,a5=3a7,前n項(xiàng)和為Sn,若Sn取得最大值,則n=________.
7或8
在等差數(shù)列{an}中,a1>0,公差d<0.
∵a5=3a7,∴a1+4d=3(a1+6d),
∴a1=-7d,
∴Sn=n(-7d)+d=(n2-15n),
∴n=7或8時(shí),Sn取得最大值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)(,an+1)( n ∈N*)在函數(shù)y=x2+1的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列 滿足b1=1,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)(其中),區(qū)間.
(1)求區(qū)間的長度(注:區(qū)間的長度定義為);
(2)把區(qū)間的長度記作數(shù)列,令,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•湖北)已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a1=a(a≠0),an+1=rSn(n∈N*,r∈R,r≠﹣1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差數(shù)列,試判斷:對于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列是等差數(shù)列,且,那么數(shù)列的前11項(xiàng)和等于(    )
A.22B.24C.44D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2014·湖北模擬]已知等比數(shù)列{an}中,各項(xiàng)都是正數(shù),且a1, a3,2a2成等差數(shù)列,則=(  )
A.1+B.1-C.3+2D.3-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

[2014·浙江調(diào)研]設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,已知a1=1,an=-Sn·Sn-1(n≥2),則Sn=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(5分)(2011•重慶)在等差數(shù)列{an}中,a2=2,a3=4,則a10=(      )
A.12B.14C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在四個(gè)正數(shù)2,a,b,9中,若前三個(gè)數(shù)成等差數(shù)列,后三個(gè)數(shù)成等比數(shù)列,則a=__b=____

查看答案和解析>>

同步練習(xí)冊答案