(本小題滿分15分)

已知函數(shù)

(Ⅰ)求函數(shù)的極值;

(Ⅱ)對(duì)于曲線上的不同兩點(diǎn),如果存在曲線上的點(diǎn),且,使得曲線在點(diǎn)處的切線,則稱為弦的伴隨切線。特別地,當(dāng)時(shí),又稱的λ——伴隨切線。

(。┣笞C:曲線的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;

(ⅱ)是否存在曲線C,使得曲線C的任意一條弦均有伴隨切線?若存在,給出一條這樣的曲線 ,并證明你的結(jié)論; 若不存在 ,說明理由。

 

【答案】

(Ⅰ)當(dāng)時(shí),沒有極值;

當(dāng)時(shí),的極大值為,沒有極小值。(Ⅱ)見解析        

【解析】(Ⅰ)  

當(dāng),,函數(shù)內(nèi)是增函數(shù),

∴函數(shù)沒有極值。        當(dāng)時(shí),令,得。

當(dāng)變化時(shí),變化情況如下表:

0

單調(diào)遞增

極大值

單調(diào)遞減

∴當(dāng)時(shí),取得極大值

綜上,當(dāng)時(shí),沒有極值;

當(dāng)時(shí),的極大值為,沒有極小值。          

(Ⅱ)(。┰O(shè)是曲線上的任意兩點(diǎn),要證明

有伴隨切線,只需證明存在點(diǎn),使得

,且點(diǎn)不在上。

,即證存在,使得,即成立,且點(diǎn)不在上。    …………………8分

以下證明方程內(nèi)有解。…

,則。

,

,

內(nèi)是減函數(shù),∴。

,則,即!9分

同理可證!。

∴函數(shù)內(nèi)有零點(diǎn)。

即方程內(nèi)有解。又對(duì)于函數(shù),則

可知,即點(diǎn)Q不在上。

是增函數(shù),∴的零點(diǎn)是唯一的,

即方程內(nèi)有唯一解。

綜上,曲線上任意一條弦均有伴隨切線,并且伴隨切線是唯一的。

(ⅱ)取曲線C:,則曲線的任意一條弦均有伴隨切線。

證明如下:

設(shè)是曲線C上任意兩點(diǎn)

,

即曲線C:的任意一條弦均有伴隨切線。  

注:只要考生給出一條滿足條件的曲線,并給出正確證明,均給滿分。若只給曲

線,沒有給出正確的證明,請(qǐng)酌情給分。

解法二:

(Ⅰ)同解法一。

(Ⅱ)(ⅰ)設(shè)是曲線上的任意兩點(diǎn),要證明

有伴隨切線,只需證明存在點(diǎn),使得

,且點(diǎn)不在上。  ∵,即證存在,使得,

成立,且點(diǎn)不在上。 ……………  8分

以下證明方程內(nèi)有解。

設(shè)!

。

,

內(nèi)是增函數(shù),

。   同理。

∴方程內(nèi)有解。 又對(duì)于函數(shù),

,,

可知,即點(diǎn)Q不在上。

內(nèi)是增函數(shù),

∴方程內(nèi)有唯一解。

綜上,曲線上任意一條弦均有伴隨切線,并且伴隨切線是唯一的。

(ⅱ)同解法一。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試分別解答以下兩小題.

(ⅰ)若不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍;

(ⅱ)若是兩個(gè)不相等的正數(shù),且,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分15分).

已知、分別為橢圓

上、下焦點(diǎn),其中也是拋物線的焦點(diǎn),

點(diǎn)在第二象限的交點(diǎn),且。

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點(diǎn)P(1,3)和圓,過點(diǎn)P的動(dòng)直線與圓相交于不同的兩點(diǎn)A,B,在線段AB取一點(diǎn)Q,滿足:)。求證:點(diǎn)Q總在某定直線上。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分15分)

如圖已知,橢圓的左、右焦點(diǎn)分別為,過的直線與橢圓相交于A、B兩點(diǎn)。

(Ⅰ)若,且,求橢圓的離心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題滿分15分)若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052202033078124869/SYS201205220205036875888611_ST.files/image002.png">,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題

(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:

(1)第1次抽到理科題的概率;

(2)第1次和第2次都抽到理科題的概率;

(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案