已知在直角坐標系中(O為坐標原點),數(shù)學公式
(I)若A、B、C可構成三角形,求x的取值范圍;
(II)當x=6時,直線OC上存在點M,且數(shù)學公式,求點M的坐標.

解:(1)∵A、B、C可構成三角形,
∴A、B、C三點不共線,
不共線
=(1,-4),=(x-3,2)
則有1×2+4×(x-3)≠0
即x的取值范圍是x∈R且x≠
(2)∵共線,故設==(6λ,3λ),
又∵,∴
即45λ2-48λ+11=0,解得
=(2,1)或=(
∴點M的坐標為(2,1)或(
分析:(1)若A、B、C可構成三角形,則不共線,根據不共線向量坐標之間的關系求得x的取值范圍.
(2)設==(6λ,3λ),根據得到關于λ的式子,求得λ的值即可.
點評:本題考查了向量的共線與垂直以及向量的坐標運算,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知在直角坐標系中(O為坐標原點),
OA
=(2,5),
OB
=(3,1),
OC
=(x,3)

(I)若A、B、C可構成三角形,求x的取值范圍;
(II)當x=6時,直線OC上存在點M,且
MA
MB
,求點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在直角坐標系中,直線l的參數(shù)方程為
x=2t+2
y=1+4t
(t為參數(shù)),圓C的參數(shù)方程為
x=1+
2
cosα
y=1+
2
sinα
(α為參數(shù))
(1)試寫出直線l的普通方程和圓C的普通方程
(2)判斷直線l與圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在直角坐標系中,An(an,0),Bn(0,bn)(n∈N*),其中數(shù)列{an},{bn}都是遞增數(shù)列.
(1)若an=2n+1,bn=3n+1,判斷直線A1B1與A2B2是否平行;
(2)若數(shù)列{an},{bn}都是正項等差數(shù)列,設四邊形AnBnBn+1An+1的面積為Sn(n∈N*),求證:{Sn}也是等差數(shù)列;
(3)若an=2nbn=an+b(a,b∈Z),b1≥-12,記直線AnBn的斜率為kn,數(shù)列{kn}的前8項依次遞減,求滿足條件的數(shù)列{bn}的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆黑龍江省哈三中高三第一次模擬考試數(shù)學理卷 題型:解答題

(本小題滿分10分)
選修4-4:坐標系與參數(shù)方程
已知在直角坐標系中,圓錐曲線的參數(shù)方程為為參數(shù)),定點是圓錐曲線的左,右焦點.
(Ⅰ)以原點為極點、軸正半軸為極軸建立極坐標系,求經過點且平行于直線的直線的極坐標方程;
(Ⅱ)在(I)的條件下,設直線與圓錐曲線交于兩點,求弦的長.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年福建莆田一中高三上學期第一學段考試理科數(shù)學試卷(解析版) 題型:解答題

已知在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).在極坐標系(與直角坐標取相同的長度單位,且以原點為極點,軸的非負半軸為極軸)中,曲線的方程為

(Ⅰ)求曲線直角坐標方程;

(Ⅱ)若曲線、交于A、B兩點,定點,求的值.

 

查看答案和解析>>

同步練習冊答案