如圖,三棱柱中,側(cè)棱垂直底面,
,,是棱的中點(diǎn)。
(1)證明:⊥平面
(2)設(shè),求幾何體的體積。
(1)見解析;(2)
解析試題分析:(1)利用線面垂直的判斷定理證明線面垂直,條件齊全.(2)利用棱錐的體積公式求體積.(3)證明線面垂直的方法:一是線面垂直的判定定理;二是利用面面垂直的性質(zhì)定理;三是平行線法(若兩條平行線中的一條垂直于這個(gè)平面,則另一條也垂直于這個(gè)平面.解題時(shí),注意線線、線面與面面關(guān)系的相互轉(zhuǎn)化.(4)在求三棱柱體積時(shí),選擇適當(dāng)?shù)牡鬃鳛榈酌,這樣體積容易計(jì)算.
試題解析:由題意知,,所以
又,所以
由題設(shè)知,所以,即.又
,所以
(2),.
考點(diǎn):(1)空間中線面垂直的判定;(2)三棱錐的體積公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖示,在四棱錐A-BHCD中,AH⊥面BHCD,此棱錐的三視圖如下:
(1)求二面角B-AC-D的余弦弦值;
(2)在線段AC上是否存在一點(diǎn)E,使ED與面BCD成45°角?若存在,確定E的位置;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓柱的軸截面為正方形,、分別為上、下底面的圓心,為上底面圓周上一點(diǎn),已知,圓柱側(cè)面積等于.
(1)求圓柱的體積;
(2)求異面直線與所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四面體及其三視圖如圖所示,平行于棱的平面分別交四面體的棱于點(diǎn).
(1)求四面體的體積;
(2)證明:四邊形是矩形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,PA⊥平面ABCD,ABCD是矩形,AB=1,,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(1)若,求證:;
(2)若二面角的大小為,則CE為何值時(shí),三棱錐的體積為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
如圖一個(gè)幾何體的正視圖和俯視圖如圖所示,其中俯視圖為邊長(zhǎng)為的正三角形,且圓與三角形內(nèi)切,則側(cè)視圖的面積為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com