已知m∈R,函數(shù)f(x)=x2-mx,g(x)=lnx.
(1)當(dāng)x∈[1,2]時(shí),如果函數(shù)f(x)的最大值為f(1),求m的取值范圍;
(2)若對(duì)有意義的任意x,不等式f(x)>g(x)恒成立,求m的取值范圍;
(3)當(dāng)m在什么范圍內(nèi)取值時(shí),方程f(x)=g(x)分別無(wú)實(shí)根?只有一實(shí)根?有兩個(gè)不同實(shí)根?

解:(1)函數(shù)f(x)=x2-mx的圖象開口向上,函數(shù)在x=1或x=2處取得最大值,則f(1)≥f(2),1-m≥4-2m,得:m≥3.
(2)f(x)>g(x)等價(jià)于x2-mx>lnx,其中x>0,即:由,令,得,
當(dāng)x=1時(shí)t′(x)=0,當(dāng)x∈(0,1)時(shí)t′(x)<0;當(dāng)x∈(1,+∞)時(shí)t′(x)>0,m<t(x)min=t(1)=1,∴m<1.
(3)設(shè)h(x)=f(x)-g(x)=x2-mx-lnx,其中x>0.觀察得當(dāng)m=1時(shí),方程f(x)=g(x)即為:x2-x-lnx=0的一個(gè)根為x=1.猜測(cè)當(dāng)m<1,m=1,m>1時(shí)方程分別無(wú)根,只有一個(gè)根,有且只有兩個(gè)根.
證明:∵h(yuǎn)′(x)==0,等價(jià)于2x2-mx-1=0此方程有且只有一個(gè)正根為
且當(dāng)x∈(0,x0)時(shí),h′(x)<0;當(dāng)x∈(x0,+∞)時(shí),h′(x)>0,函數(shù)只有一個(gè)極值h(x)min=h(x0)=x02-mx0-lnx0
1°當(dāng)m<1時(shí),由(2)得f(x)>g(x)恒成立,方程無(wú)解.
2°當(dāng)m=1時(shí),x0=1,h(x)min=h(1)=0,則h(x)≥h(x)min=0,當(dāng)且僅當(dāng)x=1時(shí),h(x)=0,此時(shí)只有一個(gè)根x=1.
3°當(dāng)m>1時(shí),,關(guān)于m在(1,+∞)上遞增,∴x0∈(1,+∞)時(shí)lnx0>0,∵m>1?1<m2?8<8m2?m2+8<9m2?
???x0<m.∴h(x)min=h(x0)=x02-mx0-lnx0=x0(x0-m)-lnx0<0.證畢
分析:(1)本問(wèn)題求出函數(shù)的最值代入已知最大值為f(1),即可解得參數(shù)m的值,
(2)本題恒成立問(wèn)題轉(zhuǎn)化為函數(shù)的最值來(lái)解答,具體方法是由f(x)>g(x)等價(jià)于x2-mx>lnx,即,構(gòu)造出函數(shù),利用導(dǎo)數(shù)工具可以求解.
(3)我們對(duì)本題可以這樣處理,想根據(jù)函數(shù)y=x2,y=mx,y=lnx的圖象的增減性,判斷猜測(cè)出參數(shù)m取值時(shí)分別對(duì)應(yīng)方程的根的情況,然后來(lái)證明這個(gè)結(jié)論.證明時(shí)可利用新構(gòu)造的函數(shù)h(x)=f(x)-g(x),利用導(dǎo)數(shù)以及函數(shù)的單調(diào)性,求出函數(shù)的最值來(lái)判斷根x0的性質(zhì)以辨別是否存在這個(gè)根.
點(diǎn)評(píng):本題考查二次函數(shù)在定區(qū)間上的最值問(wèn)題,函數(shù)類型簡(jiǎn)單,是一個(gè)二次函數(shù),第一問(wèn)的設(shè)計(jì)很容易,后面兩問(wèn)的綜合性較強(qiáng),對(duì)學(xué)生的邏輯思維能力,運(yùn)算能力有很好的鍛煉價(jià)值,本題第二小題是一個(gè)恒成立的問(wèn)題,求參數(shù)的范圍,一般轉(zhuǎn)化最值問(wèn)題來(lái)求解,本題第三問(wèn)也是構(gòu)造函數(shù)來(lái)解答,轉(zhuǎn)化為利用導(dǎo)數(shù)研究新構(gòu)造的函數(shù)的單調(diào)性求出函數(shù)的最值,結(jié)合最值來(lái)判斷根的存在與否.本題對(duì)運(yùn)算能力有一定的要求,解題時(shí)一定要嚴(yán)謹(jǐn).考查的思想方法有分類討論,構(gòu)造函數(shù)等方法思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m∈R,函數(shù)f(x)=(x2+mx+m)ex
(1)若函數(shù)f(x)沒有零點(diǎn),求實(shí)數(shù)m的取值范圍;
(2)若函數(shù)f(x)存在極大值,并記為g(m),求g(m)的表達(dá)式;
(3)當(dāng)m=0時(shí),求證:f(x)≥x2+x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m∈R,函數(shù)f(x)=(x2+mx+m)ex
(Ⅰ)若m=-1,求函數(shù)f(x)的極值;
(Ⅱ)若函數(shù)f(x)沒有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•大連一模)已知m∈R,函數(shù)f(x)=mx2-2ex
(Ⅰ)當(dāng)m=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)有兩極值點(diǎn)a,b(a<b),(。┣髆的取值范圍;(ⅱ)求證:-e<f(a)<-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•大連一模)已知m∈R,函數(shù)f(x)=mx2-2ex
(Ⅰ)當(dāng)m=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)有兩個(gè)極值點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m∈R,函數(shù)f(x)=mx-
m-1
x
-lnx
,g(x)=
1
2
+lnx

(I)求g(x)的極小值;
(Ⅱ)若y=f(x)-g(x)在[1,+∞)上為單調(diào)增函數(shù),求實(shí)數(shù)m的取值范圍;
(Ⅲ)證明:
ln2
2
+
ln3
3
+
ln4
4
+…+
lnn
n
n2
2(n+1)
(n∈N*)

查看答案和解析>>

同步練習(xí)冊(cè)答案