等比數(shù)列{an}的前n項和為Sn,若S2n=4(a1+a3+…+a2n-1),a1a2a3=27,則a6=( )
A.27
B.81
C.243
D.729
【答案】分析:利用等比數(shù)列的性質可得,a1a2a3=a23=27 從而可求a2,結合S2n=4(a1+a3+…+a2n-1
考慮n=1可得,S2=a1+a2=4a1從而可得a1及公比 q,代入等比數(shù)列的通項公式可求a6
解答:解:利用等比數(shù)列的性質可得,a1a2a3=a23=27 即a2=3
因為S2n=4(a1+a3+…+a2n-1
所以n=1時有,S2=a1+a2=4a1從而可得a1=1,q=3
所以,a6=1×35=243
故選C
點評:本題主要考查了等比數(shù)列的性質,等比數(shù)列的前 n項和公式及通項公式,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)敘述并證明等比數(shù)列的前n項和公式;
(2)已知Sn是等比數(shù)列{an} 的前n項和,S3,S9,S6成等差數(shù)列,求證:a1+k,a7+k,a4+k(k∈N)成等差數(shù)列;
(3)已知Sn是正項等比數(shù)列{an} 的前n項和,公比0<q≤1,求證:2Sn+1≥Sn+Sn+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

Sn是等比數(shù)列{an}的前n項和,對于任意正整數(shù)n,恒有Sn>0,則等比數(shù)列{an}的公比q的取值范圍為
(-1,0)∪(0,+∞)
(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•藍山縣模擬)統(tǒng)計某校高三年級100名學生的數(shù)學月考成績,得到樣本頻率分布直方圖如下圖所示,已知前4組的頻數(shù)分別是等比數(shù)列{an}的前4項,后6組的頻數(shù)分別是等差數(shù)列{bn}的前6項,
(1)求數(shù)列{an}、{bn}的通項公式;
(2)設m、n為該校學生的數(shù)學月考成績,且已知m、n∈[70,80)∪[140,150],求事件|m-n|>10”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等比數(shù)列{an}的前n項和為Sn,又Wn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,如果a8=10,那么S15:W15=
100
100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn是正項等比數(shù)列{an}的前n項和,S2=4,S4=20則數(shù)列的首項a1=( 。

查看答案和解析>>

同步練習冊答案