看下面的演繹推理過程:
大前提:棱柱的體積公式為:底面積×高.
小前提:如圖直三棱柱ABC-DEF.H是棱AB的中點,ABED為底面,CH⊥平面ABED,即CH為高,
結(jié)論:直三棱柱ABC-DEF的體積為 SABED•CH.這個推理過程( 。
A、正確
B、錯誤,大前提出錯
C、錯誤,小前提出錯
D、錯誤,結(jié)論出錯
考點:演繹推理的意義
專題:規(guī)律型
分析:本題考查的知識點是演繹推理的基本方法及整數(shù)的,在使用三段論推理證明中,如果命題是錯誤的,則可能是“大前提”錯誤,也可能是“小前提”錯誤,也可能是推理形式錯誤,根據(jù)棱柱的幾何特征,可知:直三棱柱ABC-DEF中,底面只能為平面ABC或平面DEF,不能為平面ABED,進而可得答案.
解答:解:∵直三棱柱ABC-DEF中,底面只能為平面ABC或平面DEF,不能為平面ABED,
∴小前提:如圖直三棱柱ABC-DEF.H是棱AB的中點,ABED為底面,CH⊥平面ABED,即CH為高,錯誤,
故這個演繹推理過程,由小前提出錯而導(dǎo)致錯誤,
故選:C
點評:演繹推理的主要形式就是由大前提、小前提推出結(jié)論的三段論推理.三段論推理的依據(jù)用集合論的觀點來講就是:若集合M的所有元素都具有性質(zhì)P,S是M的子集,那么S中所有元素都具有性質(zhì)P.三段論的公式中包含三個判斷:第一個判斷稱為大前提,它提供了一個一般的原理;第二個判斷叫小前提,它指出了一個特殊情況;這兩個判斷聯(lián)合起來,揭示了一般原理和特殊情況的內(nèi)在聯(lián)系,從而產(chǎn)生了第三個判斷結(jié)論.演繹推理是一種必然性推理,演繹推理的前提與結(jié)論之間有蘊涵關(guān)系.因而,只要前提是真實的,推理的形式是正確的,那么結(jié)論必定是真實的,但錯誤的前提可能導(dǎo)致錯誤的結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,復(fù)數(shù)
4+2i
1-2i
-(1-i)2-4i=(  )
A、0B、2C、-4iD、4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個不透明圓錐體的正視圖和側(cè)視圖(左視圖)為兩全等的正三角形.若將它倒立放在桌面上,則該圓錐體在桌面上從垂直位置倒放到水平位置的過程中(含起始位置和最終位置),其在水平桌面上正投影不可能是(  )
A、
圓形區(qū)域
B、
等腰三角形兩腰與半橢圓圍成的區(qū)域
C、
等腰三角形兩腰與半圓圍成的區(qū)域
D、
橢圓形區(qū)域

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某大學(xué)數(shù)學(xué)專業(yè)的160名學(xué)生中開展一項社會調(diào)查,先將學(xué)生隨機編號為01,02,03,…,160,采用系統(tǒng)抽樣的方法抽取樣本,已知抽取的學(xué)生中最小的兩個編號為07號、23號,那么抽取的最大編號是(  )
A、150B、151
C、142D、143

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點,P是它們的一個公共點.且∠F1PF2=
π
3
,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為( 。
A、
4
3
3
B、
2
3
3
C、3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

|
a
|
=2,|
b
|
=1,且
a
b
的夾角為60°,當|
a
-x
b
|
取得最小值時,實數(shù)x的值為( 。
A、2B、-2C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x2-2x-3<0}和N={x|x>1}的關(guān)系如圖所示,則陰影部分所表示的集合為( 。
A、{x|x>1}
B、{x|x<3}
C、{x|1<x<3}
D、{x|-1<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2≥1,x∈R},B={x|log2x<2,x∈R},則∁RA∩B=( 。
A、[0,1]
B、(0,1)
C、(-3,1)
D、[-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的角A,B,C所對的邊分別為a,b,c,若a=
2
,A=45°,B=105°,則邊c=( 。
A、
3
2
B、1
C、
3
D、
6
+
2
2

查看答案和解析>>

同步練習(xí)冊答案