9.函數(shù)$f(x)=\frac{3}{{\sqrt{1-x}}}$的定義域是(-∞,1).

分析 根據(jù)二次根式的性質(zhì)求出函數(shù)的定義域即可.

解答 解:由題意得:
1-x>0,解得:x<1,
故函數(shù)的定義域是(-∞,1),
故答案為:(-∞,1).

點評 本題考查了求函數(shù)的定義域問題,考查二次根式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直線x+2y-4=0與拋物線${y^2}=\frac{1}{2}x$相交于A,B兩點(A在B上方),O是坐標(biāo)原點.
(Ⅰ)求拋物線在A點處的切線方程;
(Ⅱ)試在拋物線的曲線AOB上求一點P,使△ABP的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知冪函數(shù)$y=({{m^2}-m-1}){x^{{m^2}-2m-\frac{1}{3}}}$,當(dāng)x∈(0,+∞)時為減函數(shù),則該冪函數(shù)的解析式是${x}^{-\frac{1}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知角α、β頂點在坐標(biāo)原點,始邊為x軸正半軸.甲:“角α、β的終邊關(guān)于y軸對稱”;乙:“sin(α+β)=0”.則條件甲是條件乙的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知冪函數(shù)f(x)=xα,$α∈\left\{{-2,-\frac{1}{2},-\frac{1}{3},\frac{1}{2},2,3}\right\}$的圖象關(guān)于原點對稱,且當(dāng)x∈(0,+∞)時單調(diào)遞增,則α=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下面說法中,錯誤的是( 。
A.“x,y中至少有一個小于零”是“x+y<0”的充要條件
B.“a2+b2=0”是“a=0且b=0”的充要條件
C.“ab≠0”是“a≠0或b≠0”的充要條件
D.若集合A是全集U的子集,則命題“x∉∁UA”與“x∈A”是等價命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)a>1,b>1,若a+b=4,則(a-1)(b-1)的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=sinxcosx是(  )
A.周期為π的偶函數(shù)B.周期為π的奇函數(shù)
C.周期為$\frac{π}{2}$的偶函數(shù)D.周期為$\frac{π}{2}$的奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=1+ln(x+1).
(1)求函數(shù)f(x)在點(0,f(0))處的切線方程;
(2)當(dāng)x>0時,f(x)>$\frac{kx}{x+1}$恒成立,求整數(shù)k的最大值.

查看答案和解析>>

同步練習(xí)冊答案