給出下列命題:
①存在實數(shù)α使sinα•cosα=1成立;
②存在實數(shù)α使成立;
③函數(shù)是偶函數(shù);
是函數(shù)的圖象的一條對稱軸的方程;
⑤在△ABC中,若A>B,則sinA>sinB.
其中正確命題的序號是    (注:把你認為正確的命題的序號都填上).
【答案】分析:根據(jù)二倍角公式得到sinαcosα=sin2α,結(jié)合正弦函數(shù)的值域可判斷①正誤;
根據(jù)兩角和與差的正弦公式可得到sinα+cosα=)結(jié)合正弦函數(shù)的可判斷②正誤;
根據(jù)誘導(dǎo)公式得到 =sin( )=cos2x,再由余弦函數(shù)的奇偶性可判斷③正誤;
將x=代入到y(tǒng)=sin(2x+)得到sin(2×+)=sin =-1,根據(jù)正弦函數(shù)的對稱性可判斷④正誤.
根據(jù)正弦定理和大邊對大角,可以判斷⑤的正誤.
解答:解:對于①,由sinα•cosα=1,得sin2α=2,矛盾;
對于②,由,得,矛盾;
對于③,,是偶函數(shù);
對于④,把代入得y=-1,是對稱軸方程;
對于⑤,A>B⇒a>b⇒2RsinA>2RsinB⇒sinA>sinB.所以③、④、⑤正確.
故答案為:③④⑤.
點評:本題主要考查二倍角公式、兩角和與差的公式、誘導(dǎo)公式和三角函數(shù)的對稱性.考查三角函數(shù)公式的綜合應(yīng)用.三角函數(shù)的公式比較多,很容易記混,平時要注意積累.是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:①存在實數(shù)x,使得sinx+cosx=
π
3
;②函數(shù)y=sinx的圖象向右平移
π
4
個單位,得到y=sin(2x+
π
4
)
的圖象;③函數(shù)y=sin(
2
3
x-
7
2
π)
是偶函數(shù);④已知α,β是銳角三角形ABC的兩個內(nèi)角,則sinα>cosβ.其中正確的命題的個數(shù)為(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①存在實數(shù)α,使sinα•cosα=1
②函數(shù)y=sin(
3
2
π+x)
是偶函數(shù)
x=
π
8
是函數(shù)y=sin(2x+
5
4
π)
的一條對稱軸方程
④若α、β是第一象限的角,且α>β,則sinα>sinβ
其中正確命題的序號是
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①存在實數(shù)x,使得sinx+cosx=
π
3
;
②函數(shù)y=sin2x的圖象向右平移
π
4
個單位,得到y=sin(2x+
π
4
)
的圖象;
③函數(shù)y=sin(
2
3
x-
7
2
π)
是偶函數(shù);
④已知α,β是銳角三角形ABC的兩個內(nèi)角,則sinα>cosβ.
其中正確的命題的個數(shù)為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①存在實數(shù)a,使sinacosa=1;
②y=cosx的單調(diào)遞增區(qū)間是[2kπ,(2k+1)π],(k∈Z);
③y=sin(
2
-2x)是偶函數(shù);
④若α,β是第一象限角,且α>β,則tanα>tanβ.
⑤函數(shù)f(x)=4sin(2x+
π
3
)的表達式可以改寫成f(x)=4cos(2x-
π
6

⑥函數(shù)y=sinx的圖象的對稱軸方程為x=kπ+
π
2
,(k∈Z)

其中正確命題的序號是
③⑤⑥
③⑤⑥
.(注:把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①存在實數(shù)α使sinα•cosα=1成立;
②存在實數(shù)α使sinα+cosα=
3
2
成立;
③函數(shù)y=sin(
2
-2x)
是偶函數(shù);
x=
π
8
是函數(shù)y=sin(2x+
4
)
的圖象的一條對稱軸的方程;
⑤在△ABC中,若A>B,則sinA>sinB.
其中正確命題的序號是( 。

查看答案和解析>>

同步練習(xí)冊答案