設拋物線M:y2=4x的焦點F是橢圓N:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點.若M與N的公共弦AB恰好過F,則橢圓的長軸長為
 
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)對稱性,可得AB⊥OF,求出拋物線的焦點,令x=1分別代入拋物線方程和橢圓方程,解得y,得到弦長,再由橢圓的a,b,c的關系,即可解得a,進而得到長軸長.
解答: 解:由于拋物線M與橢圓N的公共弦AB恰好過F,
則由對稱性,可得AB⊥OF,
由于F(1,0),令x=1,代入拋物線方程,解得,y=±2,
則|AB|=4,x=1代入橢圓方程,可得,y=±
b
a
a2-1
,
即有
2b
a2-1
a
=4,且a2-1=b2,
解得,a=
2
+1,
則橢圓的長軸長為2a=2
2
+2.
故答案為:2
2
+2.
點評:本題考查拋物線和橢圓的方程和性質(zhì),考查弦長的求法,考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知斜率為1的直線l過點(0,
5
4
),拋物線C:y2=2px(p>0)的頂點關于直線l的對稱點在該拋物線的準線上,求拋物線C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對?n∈N*,13+23+33+…+(n-1)3<n2,n2×S<13+23+33+…+n3恒成立,S∈N*,則S=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)y=f(x)滿足f(3-x)=f(x),(x-
3
2
)f′(x)>0,則有(  )
A、f(0)>f(2)
B、f(0)=f(2)
C、f(0)<f(2)
D、f(0),f(2)關系不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在如圖的多面體中,AE⊥底面BEFC,AD∥EF∥BC,CF=BE=AD=EF=
1
2
BC=2,AE=2,G是BC的中點.
(1)求證:AB∥平面DEG;
(2)求證:EG⊥平面BDF;
(3)求此多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓C過點(1,0)且與直線x=-1相切.
(1)求動圓圓心C的軌跡E方程;
(2)設A,B為軌跡E上異于原點O的兩個不同點,直線OA,OB的傾斜角分別為α,β,且α+β=45°.當α,β變化時,求證:直線AB恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1,BD的中點.求證:
(1)求直線AE與平面BDD1B1所成角的正弦值;
(2)EF⊥B1C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=x-
x
值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若方程
x2
k-3
+
y2
k+3
=1表示焦點在y軸上的雙曲線,則實數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習冊答案