(請考生在下面甲、乙兩題中任選一題做答,如果多做,則按所做的甲題計分)

甲題 :

⑴ 若關于的不等式的解集不是空集,求實數(shù)的取值范圍;

⑵ 已知實數(shù),滿足,求最小值.

 

 

 

乙題:

已知曲線C的極坐標方程是=4cos。以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是是參數(shù))。

       ⑴ 將曲線C的極坐標方程化成直角坐標方程并把直線的參數(shù)方程轉化為普通方程;

       ⑵ 若過定點的直線與曲線C相交于A、B兩點,且,試求實數(shù)的值。

 

【答案】

【解析】

甲題

解(1):,

由題意得:的解集不是空集,即 …………2分

,所以

所以!7分

(2): 由及柯西不等式得

,…11分

所以, ……12分

當且僅當取等號,…14分

最小值為……15分

22. 乙題:

解⑴曲線C的直角坐標方程是=4cos,化為直角坐標方程為:

  …………4分

直線的直角坐標方程為: …………7分

⑵由直線參數(shù)方程的幾何意義將

代入得:,(*) …………9分

記兩個根, 所以,…………10分

由韋達定理,

時,解得:  …………12分

時,解得:…………14分

經(jīng)檢驗時(*)均符合題意!15分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2010年浙江省寧波市八校聯(lián)考高二第二學期期末數(shù)學(理)試題 題型:解答題

(請考生在下面甲、乙兩題中任選一題做答,如果多做,則按所做的甲題計分)

甲題 :

(1)若關于的不等式的解集不是空集,求實數(shù)的取值范圍;

(2)已知實數(shù),滿足,求最小值.

乙題:

已知曲線C的極坐標方程是=4cos。以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是是參數(shù))。

(1)將曲線C的極坐標方程化成直角坐標方程并把直線的參數(shù)方程轉化為普通方程;

(2) 若過定點的直線與曲線C相交于A、B兩點,且,試求實數(shù)的值。

 

查看答案和解析>>

同步練習冊答案