11.方程|x2-2x|=m有兩個不相等的實數(shù)根,則m的取值范圍是(  )
A.0<m<1B.m≥1C.m≤-1或m=0D.m>1或m=0

分析 結(jié)合方程的結(jié)構(gòu)特征設(shè)出函數(shù)f(x),根據(jù)二次函數(shù)的性質(zhì)畫出函數(shù)的圖象,進而解決問題得到答案.

解答 解:由題意得設(shè)函數(shù)f(x)=|x2-2x|,則其圖象如圖所示:

由圖象可得當(dāng)m=0或m>1時方程|x2-2x|=m有兩個不相等的實數(shù)根.
故選:D.

點評 解決此類問題的關(guān)鍵是熟悉方程與函數(shù)之間的相互轉(zhuǎn)化,即轉(zhuǎn)化為兩個函數(shù)有幾個交點問題,體現(xiàn)轉(zhuǎn)化與化歸的思想以及數(shù)形結(jié)合的思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=Asin($\frac{1}{2}$x+φ),x∈R,(其中,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,設(shè)點($\frac{2π}{3}$,4)是圖象上y軸右側(cè)的第一個最高點,CD⊥DB,D是y軸右側(cè)第二個對稱中心,則△DBC的面積是(  )
A.3B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$由約束條件圍成的圖形的面積$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}是等差數(shù)列,且a2=-14,a5=-5.
(1)求數(shù)列{an}的通項an
(2)求{an}前n項和Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}是公比為q的等比數(shù)列,且a1+2a2=3a3
(1)求q的值;
(2)設(shè)數(shù)列{bn}是首項為2,公差為q的等差數(shù)列,{bn}的前n項和為Tn.當(dāng)n≥2時,試比較bn與Tn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.不論m為何實數(shù),直線(2m+1)x+(m+1)y-m-1=0與圓x2+y2-2ax+a2-2a-4=0恒有公共點,則實數(shù)a的取值范圍是( 。
A.-2≤a≤2B.0≤a≤2C.-1≤a≤3D.1≤a≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,在空間四邊形ABCD(A,B,C,D不共面)中,一個平面與邊AB,BC,CD,DA分別交于E,F(xiàn),G,H(不含端點),則下列結(jié)論錯誤的是( 。
A.若AE:BE=CF:BF,則AC∥平面EFGH
B.若E,F(xiàn),G,H分別為各邊中點,則四邊形EFGH為平行四邊形
C.若E,F(xiàn),G,H分別為各邊中點且AC=BD,則四邊形EFGH為矩形
D.若E,F(xiàn),G,H分別為各邊中點且AC⊥BD,則四邊形EFGH為矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知邊長為$2\sqrt{3}$的菱形ABCD中,∠A=60°,現(xiàn)沿對角線BD折起,使得二面角A-BD-C為120°,此時點A,B,C,D在同一個球面上,則該球的表面積為( 。
A.20πB.24πC.28πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知當(dāng)x∈R,[x]表示不超過x的最大整數(shù),稱y=[x]為取整函數(shù),例如[1.2]=1,[-2.3]=-3,若f(x)=[x],且偶函數(shù)g(x)=-(x-1)2+1(x≥0),則方程f(f(x))=g(x)的所有解之和為( 。
A.1B.-2C.$\sqrt{5}-3$D.$-\sqrt{5}-3$

查看答案和解析>>

同步練習(xí)冊答案