已知an=4n+5,bn=3n,求證:對(duì)任意正整數(shù)n,都存在正整數(shù)p,使得ap=bn2成立.
an=4n+5=4(n+1)+1,表示的是被4除余1的數(shù),
而bn2=9n=(8+1)n=Cn08n+Cn18n-1+…+Cnn-1•8+1,展開式除最后一項(xiàng)之外均為8也為4的倍數(shù),
因此bn2表示被4除余1的數(shù),
因此,對(duì)任意正整數(shù)n,都存在正整數(shù)p,使得ap=bn2成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

22、已知an=4n+5,bn=3n,求證:對(duì)任意正整數(shù)n,都存在正整數(shù)p,使得ap=bn2成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知an=4n+5,bn=3n,求證:對(duì)任意正整數(shù)n,都存在正整數(shù)p,使得ap=bn2成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省南京十三中高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知an=4n+5,bn=3n,求證:對(duì)任意正整數(shù)n,都存在正整數(shù)p,使得ap=bn2成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省無錫市江陰市成化高級(jí)中學(xué)高考數(shù)學(xué)模擬試卷(02)(解析版) 題型:解答題

已知an=4n+5,bn=3n,求證:對(duì)任意正整數(shù)n,都存在正整數(shù)p,使得ap=bn2成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案