已知點(diǎn)P在線段的延長(zhǎng)線上,而且,那么P分有向線段所成的定比的值為

[    ]

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知點(diǎn)P1(x0,y0)為雙曲線
x2
8b2
-
y2
b2
=1
(b為正常數(shù))上任一點(diǎn),F(xiàn)2為雙曲線的右焦點(diǎn),過P1作右準(zhǔn)線的垂線,垂足為A,連接F2A并延長(zhǎng)交y軸于P2
(1)求線段P1P2的中點(diǎn)P的軌跡E的方程;
(2)設(shè)軌跡E與x軸交于B、D兩點(diǎn),在E上任取一點(diǎn)Q(x1,y1)(y1≠0),直線QB,QD分別交y軸于M,N兩點(diǎn).求證:以MN為直徑的圓過兩定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)F(1,0),動(dòng)點(diǎn)P在y軸(不含原點(diǎn))上運(yùn)動(dòng),過點(diǎn)P作線段PM交x軸于點(diǎn)M,使
MP
PF
=0
;再延長(zhǎng)線段MP到點(diǎn)N,使
MP
=
PN

(Ⅰ)求動(dòng)點(diǎn)N的軌跡C的方程;
(Ⅱ)直線L與軌跡C交于A、B兩點(diǎn),如果
OA
OB
=-4且|
AB
|=4
6
,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P1(x0,y0)為雙曲線
x2
3b2
-
y2
b2
=1(b>0,b為常數(shù))
上任意一點(diǎn),F(xiàn)2為雙曲線的右焦點(diǎn),過P1作右準(zhǔn)線的垂線,垂足為A,連接F2A并延長(zhǎng)交y軸于點(diǎn)P2
(1)求線段P1P2的中點(diǎn)P的軌跡E的方程;
(2)是否存在過點(diǎn)F2的直線l,使直線l與(1)中軌跡在y軸右側(cè)交于R1、R2兩不同點(diǎn),且滿足
OR1
OR2
=4b2
,(O為坐標(biāo)原點(diǎn)),若存在,求直線l的方程;若不存在,請(qǐng)說明理由;
(3)設(shè)(1)中軌跡E與x軸交于B、D兩點(diǎn),在E上任取一點(diǎn)Q(x1,y1)(y1≠0),直線QB、QD分別交y軸于M、N點(diǎn),求證:以MN為直徑的圓恒過兩個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(2,0),B(0,6),O為坐標(biāo)原點(diǎn).
(1)若點(diǎn)C在線段OB上,且∠ACB=
4
,求△ABC的面積;
(2)若原點(diǎn)O關(guān)于直線AB的對(duì)稱點(diǎn)為D,延長(zhǎng)BD到P,且|PD|=2|BD|,已知直線L:ax+10y+84-108
3
=0經(jīng)過點(diǎn)P,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省高考真題 題型:解答題

已知點(diǎn)P(x,y)為雙曲線(b為正常數(shù))上任一點(diǎn),F(xiàn)2為雙曲線的右焦點(diǎn),過P1作右準(zhǔn)線的垂線,垂足為A,連接F2A并延長(zhǎng)交y軸于P2。
(1) 求線段P1P2的中點(diǎn)P的軌跡E的方程;
(2) 設(shè)軌跡E與x軸交于B、D兩點(diǎn),在E上任取一點(diǎn)Q(x1,y1)(y1≠0),直線QB,QD分別交y軸于M,N 兩點(diǎn),求證:以MN為直徑的圓過兩定點(diǎn)。

查看答案和解析>>

同步練習(xí)冊(cè)答案