9.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a8≠0且S15-λa8=0,則實(shí)數(shù)λ=15.

分析 由等差數(shù)列的性質(zhì)可得:S15=$\frac{15({a}_{1}+{a}_{15})}{2}$=15a8,代入即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:S15=$\frac{15({a}_{1}+{a}_{15})}{2}$=15a8,
∴15a8-λa8=0,解得λ=15.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式性質(zhì)及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=sin x+$\sqrt{3}$cos x,則下列命題正確的個(gè)數(shù)是( 。
①函數(shù)f(x)的最大值為2;        
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(-$\frac{π}{6}$,0)對(duì)稱;
③函數(shù)f(x)的圖象與函數(shù)h(x)=2sin(x-$\frac{2π}{3}$)的圖象關(guān)于x軸對(duì)稱;
④若實(shí)數(shù)m使得方程f(x)=m在[0,2π]上恰好有三個(gè)實(shí)數(shù)解x1,x2,x3,則x1+x2+x3=$\frac{7π}{3}$;
⑤設(shè)函數(shù)g(x)=f(x)+2x,若g(θ-1)+g(θ)+g(θ+1)=-2π,則θ=-$\frac{π}{3}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)非負(fù)實(shí)數(shù)x,y滿足:$\left\{\begin{array}{l}y≥x-1\\ 2x+y≤5\end{array}\right.$,(2,1)是目標(biāo)函數(shù)z=ax+3y(a>0)取最大值的最優(yōu)解,則a的取值范圍是[6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.為了得到函數(shù)$y=cos(2x-\frac{π}{3})$的圖象,只要將函數(shù)y=sin2x的圖象( 。
A.向右平移$\frac{π}{6}$個(gè)單位長度B.向左平移$\frac{π}{6}$個(gè)單位長度
C.向右平移$\frac{π}{12}$個(gè)單位長度D.向左平移$\frac{π}{12}$個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=cos(2x+φ)(0<φ<π),若f(x)≤|f($\frac{π}{6}$)|對(duì)x∈R恒成立,則f(x)的單調(diào)遞減區(qū)間是(  )
A.[kπ,kπ+$\frac{π}{2}$](k∈Z)B.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)D.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,角A,B,C的對(duì)邊長分別是a,b,c,且滿足(2b-c)cosA-acosC=0
(1)求角A的大小
(2)若a=$\sqrt{3}$,△ABC的面積S△ABC=$\frac{3\sqrt{3}}{4}$,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)列{an}中,a1=2,an+1=2an-1,則a5=17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知曲線y=Asin(ωx+φ)(A>0,ω>0)上的一個(gè)最高點(diǎn)的坐標(biāo)為($\frac{π}{2}$,$\sqrt{2}$),
由此點(diǎn)到相鄰最低點(diǎn)間的曲線與x軸交于點(diǎn)($\frac{3}{2}$π,0),φ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)求這條曲線的函數(shù)解析式;
(2)當(dāng)x∈[0,π]時(shí),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若不等式|a-2|≤|x+$\frac{1}{x}$|對(duì)一切非零實(shí)數(shù)x恒成立,則實(shí)數(shù)a的最大值是4.

查看答案和解析>>

同步練習(xí)冊答案