,下列集合A,使得是A到B的映射的是   (填序號(hào))

(1)A=   (2)A= 

 

【答案】

(1)

【解析】

試題分析:對(duì)于(1)來說,集合A中的0,2,3對(duì)應(yīng)集合B中的-1,2,5,符合題意,對(duì)于(2)來說,集合A中的-3在集合B中沒有對(duì)應(yīng)的元素,所以不是映射

考點(diǎn):本題考查了映射的概念

點(diǎn)評(píng):掌握映射的概念是解決此類問題的關(guān)鍵,要注意通常有:一對(duì)一或者多對(duì)一,但不能一對(duì)多

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={1,2,3,…,n}(n∈N*),若集合A={a1a2,a3,…,am}(m∈N*),且對(duì)任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2∈{-1,0,1}),則稱集合A為集合M的一個(gè)m元基底.
(Ⅰ)分別判斷下列集合A是否為集合M的一個(gè)二元基底,并說明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一個(gè)m元基底,證明:m(m+1)≥n;
(Ⅲ)若集合A為集合M={1,2,3,…,19}的一個(gè)m元基底,求出m的最小可能值,并寫出當(dāng)m取最小值時(shí)M的一個(gè)基底A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知集合M={1,2,3,…,n}(n∈N*),若集合數(shù)學(xué)公式,且對(duì)任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2∈{-1,0,1}),則稱集合A為集合M的一個(gè)m元基底.
(Ⅰ)分別判斷下列集合A是否為集合M的一個(gè)二元基底,并說明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一個(gè)m元基底,證明:m(m+1)≥n;
(Ⅲ)若集合A為集合M={1,2,3,…,19}的一個(gè)m元基底,求出m的最小可能值,并寫出當(dāng)m取最小值時(shí)M的一個(gè)基底A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知集合M={1,2,3,…,n}(n∈N*),若集合A={a1,a2a3,…,am}(m∈N*),且對(duì)任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2∈{-1,0,1}),則稱集合A為集合M的一個(gè)m元基底.
(Ⅰ)分別判斷下列集合A是否為集合M的一個(gè)二元基底,并說明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一個(gè)m元基底,證明:m(m+1)≥n;
(Ⅲ)若集合A為集合M={1,2,3,…,19}的一個(gè)m元基底,求出m的最小可能值,并寫出當(dāng)m取最小值時(shí)M的一個(gè)基底A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:期末題 題型:解答題

已知集合M={1,2,3,…,n}(n∈N*),若集合,且對(duì)任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2{﹣1,0,1}),則稱集合A為集合M的一個(gè)m元基底.
(Ⅰ)分別判斷下列集合A是否為集合M的一個(gè)二元基底,并說明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一個(gè)m元基底,證明:m(m+1)≥n;
(III)若集合A為集合M={1,2,3,…,19}的一個(gè)m元基底,求出m的最小可能值,并寫出當(dāng)m取最小值時(shí)M的一個(gè)基底A.

查看答案和解析>>

同步練習(xí)冊(cè)答案