已知函數(shù)
(1)當(dāng)時,函數(shù)恒有意義,求實數(shù)的取值范圍;
(2)是否存在這樣的實數(shù),使得函數(shù)在區(qū)間上為減函數(shù),并且最大值為1?如果存在,試求出的值;如果不存在,請說明理由.
(1).(2)這樣的實數(shù)不存在.
【解析】第一問中,利用函數(shù)當(dāng)時,函數(shù)恒有意義,則對一切恒成立,且,然后利用一次函數(shù)求解a的范圍即可。
第二問中,假設(shè)存在這樣的實數(shù),由題設(shè)知,即,∴,此時,
當(dāng)時,沒有意義,故這樣的實數(shù)不存在
解:(1)由題設(shè),對一切恒成立,且…2分
∵,∴在上為減函數(shù),………………………………4分
從而,
∴,
∴的取值范圍為.…………………………………………………6分
(2)假設(shè)存在這樣的實數(shù),由題設(shè)知,
即,∴,
此時,……………………………………………………10分
當(dāng)時,沒有意義,故這樣的實數(shù)不存在. ………………………12分
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)
已知函數(shù)。
(1):當(dāng)時,求函數(shù)的極小值;
(2):試討論函數(shù)零點的個數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年福建省福州市高三畢業(yè)班質(zhì)檢理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè)的內(nèi)角的對應(yīng)邊分別為,且若向量與向量共線,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省東莞市第三次月考高一數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(1)當(dāng)時,求函數(shù)的最大值和最小值;
(2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測文科數(shù)學(xué)試卷 題型:解答題
已知函數(shù).().
(1)當(dāng)時,求函數(shù)的極值;
(2)若對,有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年吉林省高三上學(xué)期第二次教學(xué)質(zhì)量檢測文科數(shù)學(xué)卷 題型:解答題
已知函數(shù)
(1)當(dāng)時,求的極小值;
(2)設(shè),求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com