(12分)如圖,的角平分線AD的延長線交它的外接圓于點(diǎn)E
(I)證明:
(II)若的面積,求的大小。
(1)見解析;(2)=90°.
【解析】相似三角形有三個判定定理:判定定理1:兩角對應(yīng)相等的兩個三角形相似; 判定定理2:三邊對應(yīng)成比例的兩個三角形相似;判定定理3:兩邊對應(yīng)成比例,并且夾角相等的兩個三角形相似.在證明三角形相似時,要根據(jù)已知條件選擇適當(dāng)?shù)亩ɡ恚?/p>
(1)要判斷兩個三角形相似,可以根據(jù)三角形相似判定定理進(jìn)行證明,但注意觀察已知條件中給出的是角的關(guān)系,故采用判定定理1更合適,故需要再找到一組對應(yīng)角相等,由圓周角定理,易得滿足條件的角.
(2)根據(jù)(1)的結(jié)論,我們可得三角形對應(yīng)對成比例,由此我們可以將△ABC的面積S=12
AD•AE轉(zhuǎn)化為S= AB•AC,再結(jié)合三角形面積公式,不難得到∠BAC的大小.
證明:
(Ⅰ)由已知條件,可得
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012090811080288341398/SYS201209081108295506777411_DA.files/image004.png">是同弧上的圓周角,所以
故△ABE∽△ADC. ……5分
(Ⅱ)因?yàn)椤鰽BE∽△ADC,所以,即AB·AC=AD·AE.
又S=AB·ACsin,且S=AD·AE,故AB·ACsin= AD·AE.
則sin=1,又為三角形內(nèi)角,所以=90°. ……10分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011年湖南省普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué) 題型:解答題
(本題滿分12分)
如圖3,在圓錐中,已知的直徑的中點(diǎn).
(I)證明:
(II)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆河南靈寶三中高一上第三質(zhì)檢數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)如圖是從上下底面處在水平狀態(tài)下的棱長為的正方體中分離出來的:
(1)試判斷是否在平面內(nèi);(回答是與否)
(2)求異面直線與所成的角;
(3)如果用圖示中這樣一個裝置來盛水,那么最多可以盛多少體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山東省高三第二次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)如圖,四棱錐中,底面是邊長為4的正方形,是與的交點(diǎn),平面,是側(cè)棱的中點(diǎn),異面直線和所成角的大小是60.
(Ⅰ)求證:直線平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河北省2010年高三一模模擬(三)數(shù)學(xué)文 題型:解答題
(本題滿分12分)
如圖,在直三棱柱ABC-A1B1C1中,E是BC的中點(diǎn)。
(1)求異面直線AE與A1C所成的角;
(2)若G為C1C上一點(diǎn),且EG⊥A1C,試確定點(diǎn)G的位置;
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年廣西省高二下學(xué)期期中考試數(shù)學(xué) 題型:解答題
((本小題滿分12分)
如圖,在四棱錐中,底面是矩形.已知
.
(1)證明平面;
(2)求異面直線與所成的角的大小;
(3)求二面角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com