已知?jiǎng)狱c(diǎn)P的軌跡是曲線(xiàn)C,滿(mǎn)足點(diǎn)P到點(diǎn)F(-4,0)的距離與它到直線(xiàn)l:x=-1的距離|PQ|之比為常數(shù),又點(diǎn)(2,0)在曲線(xiàn)C上.
(1)求曲線(xiàn)C的方程;
(2)是否存在直線(xiàn)y=kx-2與曲線(xiàn)C交于不同的兩點(diǎn)M和N,且線(xiàn)段MN的中點(diǎn)為A(1,1).若存在求出求實(shí)數(shù)k的值,若不存在說(shuō)明理由.
考點(diǎn):直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題
專(zhuān)題:圓錐曲線(xiàn)中的最值與范圍問(wèn)題
分析:(1)設(shè)P(x,y),且
|PF|
|PQ|
=e
(常數(shù)),由已知條件推導(dǎo)出
|PF|
|PQ|
=
(x+4)2+y2
|x+1|
=2
.由此能求出曲線(xiàn)C的方程.
(2)由
y=kx-2
x2
4
-
y2
12
=1
,得(3-k2)x2+4kx-16=0,由此利用根的判別式能求出k的值.
解答: 解:(1)設(shè)P(x,y),且
|PF|
|PQ|
=e
(常數(shù)),
∵點(diǎn)(2,0)在曲線(xiàn)C上,∴e=
2-(-4)
2-(-1)
=2.
|PF|
|PQ|
=
(x+4)2+y2
|x+1|
=2

整理,得曲線(xiàn)C的方程為:
x2
4
-
y2
12
=1

(2)由
y=kx-2
x2
4
-
y2
12
=1
,得(3-k2)x2+4kx-16=0,
3-k2≠0
△=(4k)2-4×(3-k2)×(-16)>0

解得-2<k<2,且k≠±
3

實(shí)數(shù)k的取值范圍-2<k<2,且k≠±
3
,
設(shè)M(x1,y1),N(x2,y2),
x1+x2
2
=-
2k
3-k2
=1
,
解得k=3或k=-1
-1∉{k|-2<k<2,且k≠±
3
},故k=-1(舍去),
∴k=3.
點(diǎn)評(píng):本題考查曲線(xiàn)方程的求法,考查實(shí)數(shù)值的求法,解題時(shí)要認(rèn)真審題,注意函數(shù)與方程思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知橢圓C:
x2
25
+
y2
9
=1,以及圓O:x2+y2=9,自橢圓上一點(diǎn)P,作圓O的兩條切線(xiàn),切點(diǎn)為M,N,直線(xiàn)MN在x軸與y軸的截距分別為a,b.
(1)若點(diǎn)P在第一象限且橫坐標(biāo)為4,求過(guò)點(diǎn)M,N,P的圓的方程;
(2)對(duì)于異于橢圓上頂點(diǎn)的任意點(diǎn)P,代數(shù)式
9
a2
+
25
b2
的值是否都恒為常數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線(xiàn)S:
x2
a2
-
y2
b2
=1,M(x0,y0)∉S,且x0y0≠0.N(λx0,λy0),其中
1
λ
=
x02
a2
-
y02
b2
.過(guò)點(diǎn)N的直線(xiàn)L交雙曲線(xiàn)S于A,B兩點(diǎn),過(guò)點(diǎn)B作斜率為
b2x0
a2y0
的直線(xiàn)交雙曲線(xiàn)S于點(diǎn)C.求證:A,M,C三點(diǎn)共線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|
1
2
≤x≤3},函數(shù)g(x)=bx,f(x)=ln(ax2-2x+b),若函數(shù)f(x)的定義域?yàn)镹,且M∩N=[
1
2
2
3
),M∪N=(-2,3]
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)求關(guān)于x的方程g(x)+g(-|x|)=2的實(shí)數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)直線(xiàn)l外的一點(diǎn)P引兩條直線(xiàn)PA,PB和直線(xiàn)l分別相交于A,B兩點(diǎn),求證:三條直線(xiàn)PA,PB,l共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
2
3
,且過(guò)點(diǎn)(3
3
,
5
),點(diǎn)A、B分別是橢圓C 長(zhǎng)軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于x軸上方,PA⊥PF.
(1)求橢圓C的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)設(shè)M是直角三角PAF的外接圓圓心,求橢圓C上的點(diǎn)到點(diǎn)M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,離心率為
2
2
,過(guò)F1的直線(xiàn)l1交橢圓于A、B兩點(diǎn),且△ABF2的周長(zhǎng)為4
2

(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)F2且與l1垂直的直線(xiàn)l2交橢圓于C、D兩點(diǎn),求證:
1
|AB|
+
1
|CD|
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(3x+2)定義域?yàn)閇2,6].
(1)求f(x)定義域;
(2)求f(-x)定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={y|y=x2-1},B={y|y=1-x2},則A∩B=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案