設(shè)同時(shí)滿足條件:① ;② (,是與無關(guān)的常數(shù))的無窮數(shù)列叫“嘉文”數(shù)列.已知數(shù)列的前項(xiàng)和滿足: 為常數(shù),且).
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)設(shè),若數(shù)列為等比數(shù)列,求的值,并證明此時(shí)為“嘉文”數(shù)列.
(I)∴.
(II)由(I)知,
為等比數(shù)列,則有,而。
,解得,再將代入得:,其為等比數(shù)列,所以成立。由于①。
,故存在
所以符合①②,故為“嘉文”數(shù)列。
本試題主要是考查了數(shù)列的通項(xiàng)公式的求解和數(shù)列的求和的運(yùn)用以及等比數(shù)列定義問題。
(1)根據(jù)前n項(xiàng)和與通項(xiàng)公式的 關(guān)系得到數(shù)列的通項(xiàng)公式。
(2)根據(jù)新定義和第一問的結(jié)論來判定數(shù)列是否符合題意
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知遞增等比數(shù)列滿足,則
A.1B.8C.D.8或

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

各項(xiàng)均為正數(shù)的等比數(shù)列的前n項(xiàng)和為Sn,若S10=2,S30=14,則S20等于    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知是首項(xiàng)為19,公差d=-2的等差數(shù)列,的前n項(xiàng)和.(1)求通項(xiàng)公式;
(2)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在數(shù)列中,,其中為方程的解,則這個(gè)數(shù)列的前項(xiàng)和為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等比數(shù)列中,,則其前3項(xiàng)的和的取值范圍是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等比數(shù)列中,若公比,且,,則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知在等比數(shù)列{}中,,,則等比數(shù)列{}的公比q的值為(  )
A.1/4B.1/2C.2D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等比數(shù)列中,,則 __________

查看答案和解析>>

同步練習(xí)冊答案