已知(1-x)7=a+a1x+a2x2+…+a7x7,則|a|+|a1|+|a2|+…+|a7|=   
【答案】分析:利用二項展開式的通項公式求出二項展開式的通項,判斷出展開式各項系數(shù)的符號,將絕對值去掉,給二項式中的x賦值-1求出|a|+|a1|+|a2|+…+|a7|的值.
解答:解:二項展開式的通項為Tr+1=C7r(-x)r=(-1)rC7rxr
∴|a|+|a1|+|a2|+…+|a7|=a-a1+a2-…-a7
令二項式的x=-1得
27=a-a1+a2-…-a7
∴|a|+|a1|+|a2|+…+|a7|=128
故答案為128
點評:解決二項展開式的特定項問題一般利用的工具是二項展開式的通項公式;解決二項展開式的系數(shù)和問題一般利用賦值的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+x)n的展開式中,第二、三、四項的系數(shù)成等差數(shù)列,則n等于( 。
A、7B、7或2C、6D、6或14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式5-x>7|x+1|與不等式ax2+bx-2>0的解集相同,則a=
-4
-4
;b=
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標(biāo);
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標(biāo)系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標(biāo)方程;
(Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(
6
-2x)+2cos2x-1(x∈R)

(I)求函數(shù)f(x)的周期及單調(diào)遞增區(qū)間;
(II)在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,已知點(A,
1
2
)
經(jīng)過函數(shù)f(x)的圖象,b,a,c成等差數(shù)列,且
AB
AC
=9
,求a的值.

查看答案和解析>>

同步練習(xí)冊答案