分析 (1)由正弦定理和余弦定理即可得出.
(2)利用向量共線定理可得a1008+a1009=1,再利用等差數(shù)列的性質(zhì)與求和公式即可得出.
解答 解:(1)由正弦定理和余弦定理得:cosB=$\frac{{{a^2}+{c^2}-{b^2}}}{2ac}$=$-\frac{1}{2}$
∴B=120°.
(2)由已知得:a1008+a1009=1,
∴a1+a2016=a1008+a1009=1.
∴等差數(shù)列{an}的前2016項(xiàng)的和S2016=1008.
點(diǎn)評 本題考查了正弦定理和余弦定理、向量共線定理、等差數(shù)列的性質(zhì)與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (-2,0) | C. | (0,1) | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m?α,n?α,m∥n,則n∥α | B. | 若α⊥β,n?α,n⊥β,則n∥α | ||
C. | 若α∥β,m?α,則m∥β | D. | 若α⊥β,α∩β=n,m⊥n,則m⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等腰三角形 | B. | 等邊三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com