比較2n與n2的大小(n∈N+).
解析:當(dāng)n=1時(shí),21>12, 當(dāng)n=2時(shí),22=22,當(dāng)n=3時(shí),23<32, 當(dāng)n=4時(shí),24=42,當(dāng)n=5時(shí),25>52, 猜想:當(dāng)n≥5時(shí),2n>n2 下面用數(shù)學(xué)歸納法證明: (1)當(dāng)n=5時(shí),25>52成立, (2)假設(shè)n=k(k∈N*,k≥5)時(shí)2k>k2, 那么2k+1=2·2k=2k+2k>k2+(1+1)k>k2+=k2+2k+1=(k+1)2. ∴當(dāng)n=k+1時(shí),2n>n2. 由(1)(2)可知,對(duì)n≥5的一切自然數(shù)2n>n2都成立. 綜上,得當(dāng)n=1或n≥5時(shí),2n>n2;當(dāng)n=2,4時(shí),2n=n2;當(dāng)n=3時(shí),2n<n2. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):13.1 數(shù)學(xué)歸納法(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com