已知
a
=(3,4),
b
=(-1,2m),
c
=(m,-4),滿(mǎn)足
c
⊥(
a
+
b
)
,則m=
 
考點(diǎn):數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系
專(zhuān)題:平面向量及應(yīng)用
分析:根據(jù)平面向量的坐標(biāo)運(yùn)算,利用兩向量垂直,數(shù)量積為0,求出m的值.
解答: 解:∵
a
=(3,4),
b
=(-1,2m),
c
=(m,-4),
a
+
b
=(2,2m+4);
又∵
c
⊥(
a
+
b
)
,
∴2m+(-4)×(2m+4)=0,
解得m=-
8
3

故答案為:-
8
3
點(diǎn)評(píng):本題考查了平面向量的坐標(biāo)運(yùn)算以及兩向量垂直的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin(cosθ)•cos(sinθ)<0,則θ為第
 
象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={0,1,3},N={x|x=3a,a∈M},則M∪N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(cosα,(λ-1)sinα),
b
=(cosβ,sinβ),(λ>0,0<α<β<
π
2
)是平面上的兩個(gè)向量,若向量
a
+
b
a
-
b
互相垂直.
(1)求實(shí)數(shù)λ的值;
(2)若
a
b
=
4
5
,且tanβ=
4
3
,求tan(α-
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某城市出租車(chē),計(jì)費(fèi)規(guī)則如下:乘客上車(chē)后,行駛3km內(nèi)收費(fèi)都是10元(即起步價(jià)10元),若超過(guò)3km,除起步價(jià)外,超過(guò)部分按2元/km收費(fèi)計(jì)價(jià),若超過(guò)15km,超過(guò)部分按3元/km收費(fèi)計(jì)價(jià),設(shè)某乘客行駛路程為xkm(x<x≤20),(結(jié)社途中一路順利,沒(méi)有停車(chē)等候),求:
(1)該乘客所付打的費(fèi)y元與乘車(chē)路程x之間的函數(shù)關(guān)系式;
(2)若該乘客需要乘車(chē)18km,則他應(yīng)付打的費(fèi)多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

投擲一顆質(zhì)地均勻的骰子兩次,記向上一面的點(diǎn)數(shù)分別為a,b,則事件“a+b>4”發(fā)生的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知角A,B,C所對(duì)的邊分別為a,b,c,已知a=
3
,b=
2
,A=60°,則角B=( 。
A、30°B、45°
C、60°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三個(gè)數(shù)字log47,log 
1
2
3,2 
2
按從大到小的順序排列為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:無(wú)窮數(shù)列{an}的前n項(xiàng)和為Sn,若{an}是等差數(shù)列,則點(diǎn)(n,Sn)在同一條拋物線(xiàn)上;命題q:若實(shí)數(shù)m>1,則mx2+2(m-2)x+1>0的解集為R,對(duì)于命題p的逆否命題s與命題q的逆命題r,下列判斷正確的是(  )
A、s是假命題,r是真命題
B、s是真命題,r假命題
C、s是假命題,r是假命題
D、s是真命題,r是真命題

查看答案和解析>>

同步練習(xí)冊(cè)答案