對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)是函數(shù)y=f(x)的導(dǎo)數(shù)y=的導(dǎo)數(shù),若方程=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有‘拐點(diǎn)’;任何一個(gè)三次函數(shù)都有對(duì)稱中心;且‘拐點(diǎn)’就是對(duì)稱中心.”請(qǐng)你將這一發(fā)現(xiàn)為條件,函數(shù)f(x)=x3x2+3x-,則它的對(duì)稱中心為________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:設(shè)計(jì)選修數(shù)學(xué)-2-2蘇教版 蘇教版 題型:044

對(duì)于三次函數(shù)f(x)=x3-3x2-3mx+4(其中m為常數(shù))存在極植,請(qǐng)完成下列問題.

(1)求f(x)的單調(diào)區(qū)間及極值;

(2)當(dāng)f(x)的極大值為5時(shí),求m的值;

(3)求曲線y=f(x)的切線中過原點(diǎn)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:福建省福州八縣(市)一中2012屆高三上學(xué)期期中聯(lián)考數(shù)學(xué)文科試題 題型:022

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)是函數(shù)yf(x)的導(dǎo)數(shù)y的導(dǎo)數(shù),若方程=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0f(x0))為函數(shù)yf(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有‘拐點(diǎn)’;任何一個(gè)三次函數(shù)都有對(duì)稱中心;且‘拐點(diǎn)’就是對(duì)稱中心.”請(qǐng)你將這一發(fā)現(xiàn)為條件,函數(shù),則它的對(duì)稱中心為(________);

計(jì)算________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第一次月考理科數(shù)學(xué)試卷 題型:填空題

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有‘拐點(diǎn)’;任何一個(gè)三次函數(shù)都有對(duì)稱中心;且‘拐點(diǎn)’就是對(duì)稱中心.如“函數(shù)f(x)=x3-3x2+3x對(duì)稱中心為點(diǎn) (1,1)”請(qǐng)你將這一發(fā)現(xiàn)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于三次函數(shù)f(x)=x3-3x2-3mx+4(其中m為常數(shù))存在極值,請(qǐng)回答下列問題.

(1)求f(x)的單調(diào)區(qū)間及極值;

(2)當(dāng)f(x)的極大值為5時(shí),求m的值;

(3)求曲線y=f(x)的切線中過原點(diǎn)的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案