到橢圓 右焦點(diǎn)的距離與到定直線距離相等的動點(diǎn)軌跡方程是( )
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
25 |
y2 |
9 |
x2 |
9 |
y2 |
7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年江蘇百校樣本分析)(15分)在平面直角坐標(biāo)系中,已知圓的圓心在第二象限,在軸上截得的弦長為4且與直線相切于坐標(biāo)原點(diǎn).橢圓與圓的一個交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為.
(Ⅰ)求圓的方程;
(Ⅱ)若圓上存在異于原點(diǎn)的點(diǎn),使點(diǎn)到橢圓右焦點(diǎn)的距離等于線段的長,請求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系,已知圓心在第二象限、半徑為的圓與直線相切于坐標(biāo)原點(diǎn).橢圓與圓的一個交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為.
(1)求圓的方程; (7分)
(2)試探究圓上是否存在異于原點(diǎn)的點(diǎn),使到橢圓右焦點(diǎn)的距離等于線段的長,若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由. (7分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山西省高三2月月考文科數(shù)學(xué)試卷 題型:填空題
已知橢圓+=1與雙曲線-=1在第一象限內(nèi)的交點(diǎn)為P,則點(diǎn)P到橢圓右焦點(diǎn)的距離等于____
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com