過點(0,-
1
2
)
的直線l與拋物線y=-x2交于A、B兩點,O為坐標(biāo)原點,則
OA
OB
的值為( 。
A.-
1
2
B.-
1
4
C.-4D.無法確定
法一:當(dāng)AB的斜率K=0時,可得A(-
2
2
,-
1
2
),B(
2
2
,-
1
2

OA
OB
=( -
2
2
,-
1
2
)•(
2
2
,-
1
2
)=-
1
2
+
1
4
=-
1
4

故選B
法二:,由題意可得直線AB的斜率存在
∴直線AB的方程為y=kx-
1
2
,
y=kx-
1
2
y=-x2
x2+kx-
1
2
=0
,設(shè)A(x1,y1),B(x2,y2),
則 x1+x2=-k,x1x2=-
1
2

∴y1•y2=(kx1-
1
2
)•(kx2-
1
2
)=k2x1•x2-
1
2
k(x1+x2+
1
4
=
1
4

OA
OB
=x1•x2+y1•y2=-
1
2
+
1
4
=-
1
4

故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,
CA
CB
,
OA
=(0,-2)
,M在y軸上,且
AM
=
1
2
(
AB
+
AC
)
,C在x軸上移動.
(Ⅰ)求點B的軌跡E的方程;
(Ⅱ)過點F(0,-
1
4
)
的直線l交軌跡E于H,G兩點(H在F,G之間),若
FH
=
1
2
HG
,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣東模擬)設(shè)函數(shù)f(x)=3sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)
的圖象關(guān)于直線x=
2
3
π
對稱,它的周期是π,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(0,-
1
2
)
的直線l與拋物線y=-x2交于A、B兩點,O為坐標(biāo)原點,則
OA
OB
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•唐山二模)已知動圓C經(jīng)過點(0,1),且在x軸上截得弦長為2,記該圓圓心的軌跡為E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過點M(0,
1
2
)
的直線m交曲線E于A,B兩點,過A,B兩點分別作曲線E的切線,兩切線交于點C,當(dāng)△ABC的面積為2
2
時,求直線m的方程.

查看答案和解析>>

同步練習(xí)冊答案