(2009•閘北區(qū)一模)若tanα=4,cotβ=
1
3
,則tan(α+β)=(  )
分析:利用同角三角函數(shù)的關(guān)系求出tanβ=3,,利用兩角和的正切公式求出tan(α+β)的值.
解答:解:因?yàn)?span id="ty9gpvr" class="MathJye">cotβ=
1
3
,
所以tanβ=3,
所以tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
4+3
1-4×3
=-
7
11

故選A.
點(diǎn)評(píng):利用同角三角函數(shù)的基本關(guān)系式解決問題:(1)已知某角的一個(gè)三角函數(shù)值,求該角的其它三角函數(shù)值的方法.(2)求值時(shí)要注意各三角函數(shù)的符號(hào),必要時(shí)分類討論.(3)三角函數(shù)式的化簡(jiǎn)的方法和結(jié)果應(yīng)滿足要求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)一模)一校辦服裝廠花費(fèi)2萬元購(gòu)買某品牌運(yùn)動(dòng)裝的生產(chǎn)與銷售權(quán).根據(jù)以往經(jīng)驗(yàn),每生產(chǎn)1百套這種品牌運(yùn)動(dòng)裝的成本為1萬元,每生產(chǎn)x (百套)的銷售額R(x) (萬元)滿足:R(x)=
-0.4x2+4.2x-0.8,0<x≤5
14.7-
9
x-3
,x>5

(1)該服裝廠生產(chǎn)750套此種品牌運(yùn)動(dòng)裝可獲得利潤(rùn)多少萬元?
(2)該服裝廠生產(chǎn)多少套此種品牌運(yùn)動(dòng)裝利潤(rùn)最大?此時(shí),利潤(rùn)是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)一模)若不等式|x-1|+|x+2|≥4a對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為
(-∞,log43]
(-∞,log43]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)一模)若f(x)=3x,則f-1(x)=
log3x
log3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)一模)若指數(shù)函數(shù)f(x)的圖象經(jīng)過點(diǎn)(2,
14
)
,則f(-1)的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)一模)設(shè)f(x)=2cos2x+
3
sin2x
g(x)=
1
2
f(x+
12
)+x+a
,其中a為非零實(shí)常數(shù).
(1)若f(x)=1-
3
x∈[-
π
3
,
π
3
]
,求x;
(2)試討論函數(shù)g(x)在R上的奇偶性與單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案