已知M={x|-1<x<5},N={x|x(x-4)>0},則M∩N=( 。
A、(-1,0)
B、(-1,0)∪(4,5)
C、(0,4)
D、(4,5)
考點(diǎn):交集及其運(yùn)算
專(zhuān)題:集合
分析:求出N中不等式的解集確定出N,找出M與N的交集即可.
解答: 解:由N中不等式解得:x<0或x>4,即N=(-∞,0)∪(4,+∞),
∵M(jìn)=(-1,5),
∴M∩N=(-1,0)∪(4,5),
故選:B.
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

11.已知集合A={x|3<x<2a+1},B={x|a-1≤x≤a+2}.
(1)當(dāng)a=3時(shí),求A∩B;
(2)求使B⊆A的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

|z-2i|=2,u=iz-2,則|u-2i|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果tanθ=2,那么sin2θ+sinθ•cosθ+cos2θ的值是( 。
A、
7
3
B、
7
5
C、
5
4
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(2x2-4ax)lnx+x2(a>0).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(Ⅱ)若對(duì)任意的x∈[1,+∞),函數(shù)f(x)的圖象恒在x軸上方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A=(-∞,0),B=[-2,a],若A∪B=A,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把區(qū)間[0,1]10等分,求函數(shù)y=
2x+1
+|x-2|在各分點(diǎn)的函數(shù)值,寫(xiě)出算法語(yǔ)句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a
2
lnx+(a+1)x2+1
(Ⅰ)當(dāng)a=-
1
2
時(shí),求f(x)在區(qū)間[
1
e
,e]的最小值
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列命題:
①設(shè)m為直線,α,β為平面,且m⊥β,則“m∥α”是“α⊥β”的充要條件;
(x3+
1
x
)5
的展開(kāi)式中含x3的項(xiàng)的系數(shù)為60;
③設(shè)隨機(jī)變量ξ~N(0,1),若P(ξ≥2)=p,則P(-2<ξ<0)=
1
2
-p;
④若不等式|x+3|+|x-2|≥2m+1恒成立,則m的取值范圍是(-∞,2);
⑤已知奇函數(shù)f(x)滿足f(x+π)=-f(x),且0<x<
π
2
時(shí)f(x)=x,則函數(shù)g(x)=f(x)-sinx在[-2π,2π]上有5個(gè)零點(diǎn).
其中所有真命題的序號(hào)是(  )
A、③④B、③C、④⑤D、②④

查看答案和解析>>

同步練習(xí)冊(cè)答案