18.計(jì)算($\frac{125}{27}$)${\;}^{-\frac{1}{3}}$+lg$\frac{1}{4}$-lg25=-$\frac{7}{5}$.

分析 根據(jù)對數(shù)的運(yùn)算法則和指數(shù)冪的運(yùn)算性質(zhì)計(jì)算即可.

解答 解:原式=$(\frac{5}{3})^{3×(-\frac{1}{3})}$-lg4-lg25=$\frac{3}{5}$-lg100=$\frac{3}{5}$-2=-$\frac{7}{5}$,
故答案為:-$\frac{7}{5}$.

點(diǎn)評 本題考查了對數(shù)的運(yùn)算法則和指數(shù)冪的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.每個(gè)航班都有一個(gè)最早降落時(shí)間和最晚降落時(shí)間,在這個(gè)時(shí)間窗口內(nèi),飛機(jī)均有可能降落.甲航班降落的時(shí)間窗口為上午10點(diǎn)到11點(diǎn),如果它準(zhǔn)點(diǎn)降落時(shí)間為上午10點(diǎn)40分,那么甲航班晚點(diǎn)的概率是$\frac{1}{3}$;若甲乙兩個(gè)航班在上午10點(diǎn)到11點(diǎn)之間共用一條跑道降落,如果兩架飛機(jī)降落時(shí)間間隔不超過15分鐘,則需要人工調(diào)度,在不考慮其他飛機(jī)起降的影響下,這兩架飛機(jī)需要人工調(diào)度的概率是$\frac{7}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=sinx(cosx-sinx),x∈R的值域是( 。
A.[-$\frac{1}{2}$,$\frac{3}{2}$]B.[$\frac{1-\sqrt{2}}{2},\frac{1+\sqrt{2}}{2}$]C.[-$\frac{3}{2},\frac{1}{2}$]D.[$\frac{-1-\sqrt{2}}{2},\frac{-1+\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=xm(1-x)n在區(qū)間[0,1]上的圖象如圖所示,則m,n的值為( 。
A.m=1,n=1B.m=1,n=2C.m=2,n=1D.m=2,n=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),則下列結(jié)論中一定正確的是( 。
A.函數(shù)f(x)+x2是奇函數(shù)B.函數(shù)f(x)+|x|是偶函數(shù)
C.函數(shù)x2f(x)是奇函數(shù)D.函數(shù)|x|f(x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=cosωx(ω>0),將y=f(x)的圖象向右平移$\frac{π}{3}$個(gè)單位長度后,所得的圖象與原圖象重合,則ω的最小值為( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知命題p:?x∈R,sinx≤1,則¬p為( 。
A.?x∈R,sinx≤1B.?x∈R,sinx>1C.?x∈R,sinx≥1D.?x∈R,sinx>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的三個(gè)頂點(diǎn)B1(0,-b),B2(0,b),A(a,0),焦點(diǎn)F(c,0),且B1F⊥AB2,則橢圓的離心率為$\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知點(diǎn)A($\sqrt{3}$,0)和P($\sqrt{3}$,t)(t∈R).若曲線x=$\sqrt{3-{y}^{2}}$上存在點(diǎn)B使∠APB=60°,則t的取值范圍是( 。
A.(0,1+$\sqrt{3}$]B.[0,1+$\sqrt{3}$]C.[-1-$\sqrt{3}$,1+$\sqrt{3}$]D.[-1-$\sqrt{3}$,0)∪(0,1+$\sqrt{3}$]

查看答案和解析>>

同步練習(xí)冊答案