已知橢圓(a>b>0)的離心率為,過右焦點且斜率為(k>0)的直線于相交于、兩點,若,則 =(  )
A.1B.C.D.2
B

試題分析:作橢圓的右準線,從分別作準線的垂線,垂足為,
,垂足為,根據(jù)橢圓的第二定義,,,,,,,又因為,
所以,所以,設直線的傾斜角是,即有
所以直線的斜率.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動點P到點A(-2,0)與點B(2,0)的斜率之積為-,點P的軌跡為曲線C.

(1)求曲線C的方程;
(2)若點Q為曲線C上的一點,直線AQBQ與直線x=4分別交于M,N兩點,直線BM與橢圓的交點為D.求證,AD,N三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,點到兩點的距離之和等于4,設點的軌跡為,直線交于兩點.
(1)寫出的方程;
(2)若點在第一象限,證明當時,恒有.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設F1,F(xiàn)2是橢圓C:的兩個焦點,若在C上存在一點P,使PF1⊥PF2,且∠PF1F2=30°,則C的離心率為_____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線與橢圓共頂點,且焦距是6,此雙曲線的漸近線是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的對稱軸是坐標軸,離心率為,長軸長為,則橢圓方程為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知圓C:(x+1)2+y2=16及點A(1,0),Q為圓C上一點,AQ的垂直平分線交CQ于M則點M的軌跡方程為                               .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的焦點與橢圓的一個焦點重合,它們在第一象限內(nèi)的交點為,且軸垂直,則橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓的左焦點作互相垂直的兩條直線,分別交橢圓于四點,則四邊形面積的最小值為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案