已知

   (1)若是單調(diào)函數(shù),求a的取值范圍。

   (2)若的值域?yàn)?sub>的值。

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

 (1)解法一:

當(dāng)  2分

的取值范圍是().

為增函數(shù)當(dāng)且僅當(dāng)    4分  

為減函數(shù)當(dāng)且僅當(dāng)所以,使得是單調(diào)函數(shù)的a的取值范圍是    6分

解法二:設(shè)

恒成立  2分

,則,,∴當(dāng)時(shí),,

上是增函數(shù).4分

當(dāng),上是減函數(shù).當(dāng)符號(hào)不確定,

無單調(diào)性。

是單調(diào)函數(shù),則的取值范圍是.6分

(Ⅱ)①若則由(Ⅰ)單增,

當(dāng)時(shí),

的值域不是.  7分

②若則由(Ⅰ)單調(diào)遞減,其中

(i)若a>1,則由,

時(shí),

的值域不是  8分

(ii)若a=1,則

的值域是  10分

③若,則在內(nèi),

單調(diào)遞減,

單調(diào)遞增.

=

所以,當(dāng)時(shí),七彩教育網(wǎng)

此時(shí),的值域不是   12分

綜上,使得的值域?yàn)?sub>的a的值為1.  13分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log
1
3
x
,
(1)當(dāng)x∈[
1
3
,3]
時(shí),求f(x)的反函數(shù)g(x);
(2)求關(guān)于x的函數(shù)y=[g(x)]2-2ag(x)+3(a≤3)當(dāng)x∈[-1.1]時(shí)的最小值h(a);
(3)我們把同時(shí)滿足下列兩個(gè)性質(zhì)的函數(shù)稱為“和諧函數(shù)”:
①函數(shù)在整個(gè)定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
②在函數(shù)的定義域內(nèi)存在區(qū)間[p,q](p<q)使得函數(shù)在區(qū)間[p,q]上的值域?yàn)閇p2,q2].
(Ⅰ)判斷(2)中h(x)是否為“和諧函數(shù)”?若是,求出p,q的值或關(guān)系式;若不是,請(qǐng)說明理由;
(Ⅱ)若關(guān)于x的函數(shù)y=
x2-1
+t(x≥1)是“和諧函數(shù)”,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M是同時(shí)滿足下列兩個(gè)性質(zhì)的函數(shù)f(x)的全體:
①f(x)在其定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
②在f(x)的定義域內(nèi)存在區(qū)間[a,b],使得f(x)在[a,b]上的值域是[
1
2
a,
1
2
b]

(Ⅰ)判斷函數(shù)y=-x3是否屬于集合M?并說明理由.若是,請(qǐng)找出區(qū)間[a,b];
(Ⅱ)若函數(shù)y=
x-1
+t
∈M,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M是同時(shí)滿足下列兩個(gè)性質(zhì)的函數(shù)f(x)組成的集合:①f(x)在其定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);②在f(x)的定義域內(nèi)存在區(qū)間,使得f(x)在[a,b]上的值域是[
1
2
a,
1
2
b]

(Ⅰ)判斷函數(shù)f(x)=
x
是否屬于集合M?若是,則求出a,b,若不是,說明理由;
(Ⅱ)若函數(shù)f(x)=
x-1
+t∈M
,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax(a∈R).
(Ⅰ) 寫出函數(shù)y=f(x)的圖象恒過的定點(diǎn)坐標(biāo);
(Ⅱ)直線L為函數(shù)y=φ(x)的圖象上任意一點(diǎn)P(x0,y0)處的切線(P為切點(diǎn)),如果函數(shù)y=φ(x)圖象上所有的點(diǎn)(點(diǎn)P除外)總在直線L的同側(cè),則稱函數(shù)y=φ(x)為“單側(cè)函數(shù)”.
(i)當(dāng)a=
1
2
判斷函數(shù)y=f(x)是否為“單側(cè)函數(shù)”,若是,請(qǐng)加以證明,若不是,請(qǐng)說明理由.
(i i)求證:當(dāng)x∈(-2,+∞)時(shí),ex+
1
2
x≥ln(
1
2
x+1)+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西南昌市高三第二次模擬測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性:

(2)若函數(shù)的圖像上存在不同兩點(diǎn),設(shè)線段的中點(diǎn)為,使得在點(diǎn)處的切線與直線平行或重合,則說函數(shù)是“中值平衡函數(shù)”,切線叫做函數(shù)的“中值平衡切線”。試判斷函數(shù)是否是“中值平衡函數(shù)”?若是,判斷函數(shù)的“中值平衡切線”的條數(shù);若不是,說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案