如圖,AB為⊙O的直徑,弦AC、BD交于點(diǎn)P,若AP=5,PC=3,DP=
5
,則AB=
 
精英家教網(wǎng)
分析:由AB為直徑,則∠ACB=90°,在△ABC中,由已知易得AC=8,故只要求出BC長(zhǎng),利用勾股定理即可得到答案,要求BC值,我們可以在△PBC中角解,但已知只有PC長(zhǎng),故要想辦法求出PB長(zhǎng),由AP=5,PC=3,DP=
5
,結(jié)合相交弦定理,即可得到所需要的數(shù)據(jù).
解答:解:∵AP=5,PC=3,DP=
5

由相交弦定理可得:
BP=3
5

又∵AB為直徑,
∴∠ACB=90°
∴BC=
PB2-PC2
=6
∴AB=
AC2-BC2
=10
故答案為:10
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)相交弦定理,及圓周角定理,可以根據(jù)所要求的結(jié)論結(jié)合已知條件,用分析法,從結(jié)論出發(fā)倒推,尋找解題的思路.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省濟(jì)南市高三12月質(zhì)量檢測(cè)數(shù)學(xué)文卷 題型:解答題

(本小題滿分12分)如圖,AB為圓O的直

徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD

所在的平面和圓O所在的平面垂直,且.

⑴求證:

⑵設(shè)FC的中點(diǎn)為M,求證:

⑶設(shè)平面CBF將幾何體分成的兩個(gè)錐體的體積分別為,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年遼寧省錦州市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省南充高中08-09學(xué)年高二下學(xué)期第四次月考(理) 題型:解答題

 如圖甲,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點(diǎn)C為圓周上異于AB的一點(diǎn).

(1)若一個(gè)面體中有個(gè)面是直角三角形,則稱這個(gè)面體的直度為.那么四面體的直度為多少?說(shuō)明理由;

(2)在四面體中,,設(shè).若動(dòng)點(diǎn)在四面體 表面上運(yùn)動(dòng),并且總保持.設(shè)為動(dòng)點(diǎn)的軌跡圍成的封閉圖形的面積關(guān)于角的函數(shù),求取最大值時(shí),二面角的正切值.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案