已知f(x)=x2,g(x)=(
1
2
x-m,若對?x1∈[-1,3],?x2∈[0,2],f(x1)≥g(x2),則實數(shù)m的取值范圍是______.
因為x1∈[-1,3]時,f(x1)∈[0,9];
x2∈[0,2]時,g(x2)∈[
1
4
-m,1-m].
故只需0≥
1
4
-m⇒m≥
1
4

故答案為m≥
1
4
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)y=f(2x+4)是偶函數(shù),則函數(shù)y=f(2x)的對稱軸是(    )
A.x="-2"B.x="2"C.x="-4"D.x=4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

當x>1時,不等式mx2+mx+1≥x恒成立,則實數(shù)m的取值范圍是( 。
A.[3+2
2
,+∞)
B.(-∞,3+2
2
]
C.[3-2
2
,+∞)
D.(-∞,3-2
2
]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x-
1
2|x|

(1)設集合A={x|f(x)≤
15
4
}
,B={x|x2-6x+p<0},若A∩B≠∅,求實數(shù)p的取值范圍;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于任意滿足θ∈[0,
π
2
]
的θ,使得|sinθ-pcosθ-q|≤
2
-1
2
恒成立的所有實數(shù)對(p,q)是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若(m+1)x2-(m-1)x+3(m-1)<0對任意實數(shù)x恒成立,則實數(shù)m的取值范圍是(  )
A.m>1B.m<-1
C.m<-
13
11
D.m>1或m<-
13
11

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若命題:“任意x∈R,不等式ax2-x+1>0恒成立”為真命題,則a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)y=
log2|x|
x
的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設函數(shù)為奇函數(shù),則___________。

查看答案和解析>>

同步練習冊答案