已知焦點在x軸上,中心在坐標原點的橢圓C的離心率為,且過點

(1)求橢圓C的方程;

(2)直線l分別切橢圓C與圓M:x2+y2=R2(其中3<R<5)于A、B兩點,求|AB|的最大值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在原點,焦點在x軸上,離心率為
3
2
,過點M(-1,0)的直線l與橢圓交于P、Q兩點.
(1)若直線l的斜率為1,且
PM
=-
3
5
QM
,求橢圓的標準方程;
(2)若(1)中橢圓的右頂點為A,直線l的傾斜角為α,問α為何值時,
AP
AQ
取得最大值,并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)在平面直角坐標系xOy中,已知橢圓C的中心在原點O,焦點在x軸上,短軸長為2,離心率為
2
2

(Ⅰ)求橢圓C的方程
(Ⅱ)A,B為橢圓C上滿足△AOB的面積為
6
4
的任意兩點,E為線段AB的中點,射線OE交橢圓C與點P,設(shè)
OP
=t
OE
,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•深圳二模)已知橢圓C的中心在原點,焦點在x軸上,點F1、F2分別是橢圓的左、右焦點,在橢圓C的右準線上的點P(2,
3
)
,滿足線段PF1的中垂線過點F2.直線l:y=kx+m為動直線,且直線l與橢圓C交于不同的兩點A、B.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點Q,滿足
OA
+
OB
OQ
(O為坐標原點),求實數(shù)λ的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,當λ取何值時,△ABO的面積最大,并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知焦點在x軸上的雙曲線的漸近線方程為x±2y=0,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知橢圓的中心在坐標原點,焦點在x軸上,并且焦距為2,短軸與長軸的比是
3
2

(1)求橢圓的方程;
(2)已知橢圓中有如下定理:過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上任意一點M(x0,y0)的切線唯一,且方程為
x0x
a2
+
y0y
b2
=1
,利用此定理求過橢圓的點(1,
3
2
)
的切線的方程;
(3)如圖,過橢圓的右準線上一點P,向橢圓引兩條切線PA,PB,切點為A,B,求證:A,F(xiàn),B三點共線.

查看答案和解析>>

同步練習冊答案