若存在x使不等式>成立,實(shí)數(shù)m的取值范圍( )

A B C D

 

【答案】

C

【解析】

試題分析:>得:,令,則.

,所以,選C.

考點(diǎn):導(dǎo)數(shù)與不等式.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北模擬)函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為正常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行.
(1)求a的值;
(2)若存在x使不等式
x-m
f(x)
x
成立,求實(shí)數(shù)m的取值范圍;
(3)對于函數(shù)y=f(x)和y=g(x)公共定義域中的任意實(shí)數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aex和g(x)=lnx-lna的圖象與坐標(biāo)軸的交點(diǎn)分別是點(diǎn)A,B,且以點(diǎn)A,B為切點(diǎn)的切線互相平行.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)F(x)=g(x)+
1
x
,求函數(shù)F(x)的極值;
(Ⅲ)若存在x使不等式
x-m
f(x)
x
成立,求實(shí)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•眉山二模)函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行.
(Ⅰ)求此平行線的距離;
(Ⅱ)若存在x使不等式
x-m
f(x)
x
成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)對于函數(shù)y=f(x)和y=g(x)公共定義域中的任意實(shí)數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行.
(1)求此平行線的距離;
(2)若存在x使不等式
x-m
f(x)
x
成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aex,g(x)=lnx-lna其中a為常數(shù),e=2.718K,函數(shù)y=f(x)和y=g(x)的圖象在它們與坐標(biāo)軸交點(diǎn)處的切線分別為l1,l2,且l1∥l2
(Ⅰ)求常數(shù)a的值及l(fā)1,l2的方程;
(Ⅱ)求證:對于函數(shù)f(x)和g(x)公共定義域內(nèi)的任意實(shí)數(shù)x,有|f(x)-g(x)|>2;
(Ⅲ)若存在x使不等式
x-m
f(x)
x
成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案