(理科)若方程x2+y2+ax+2ay+2a2+a-1=0表示的是一個(gè)圓,則a 的取值范圍為( 。
A、-2<a<0
B、-2<a<
2
3
C、a<-2
D、-
2
3
<a<0
考點(diǎn):二元二次方程表示圓的條件
專(zhuān)題:計(jì)算題,直線(xiàn)與圓
分析:根據(jù)圓的方程的一般式能夠表示圓的充要條件,得到關(guān)于a的一元二次不等式,整理成最簡(jiǎn)單的形式,解一元二次不等式得到a的范圍,得到結(jié)果.
解答:解:方程x2+y2+ax+2ay+2a2+a-1=0表示圓
∴a2+4a2-4(2a2+a-1)>0
∴3a2+4a-4<0,
∴(a+2)(3a-2)<0,
∴-2<a<
2
3

故選B.
點(diǎn)評(píng):本題考查二元二次方程表示圓的條件,考查一元二次不等式的解法,是一個(gè)比較簡(jiǎn)單的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=tanωx(ω>0)圖象的相鄰兩支截直線(xiàn)y=
π
4
所得線(xiàn)段長(zhǎng)為
π
4
,則f(
π
3
)=(  )
A、0
B、1
C、-1
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合 A={x|y=
9-x2
},B={y|y=2x,x>0}時(shí),A∩B=( 。
A、{x|x≥-3}
B、{x|1<x≤3}
C、{x|x>1}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)圓O1和圓O2是兩個(gè)相離的定圓,動(dòng)圓P與這兩個(gè)定圓都相切,則圓P的圓心軌跡可能是:
①兩條雙曲線(xiàn);
②一條雙曲線(xiàn)和一條直線(xiàn);
③一條雙曲線(xiàn)和一個(gè)橢圓.
以上命題正確的是(  )
A、①③B、②③C、①②D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線(xiàn)C1的極坐標(biāo)方程為ρcos2θ=sinθ,曲線(xiàn)C2的參數(shù)方程為
x=3-t
y=1-t
(t為參數(shù)),以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,則曲線(xiàn)C1上的點(diǎn)與曲線(xiàn)C2上的點(diǎn)最近的距離為( 。
A、2
B、
2
C、
3
2
4
D、
7
2
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若log62=m,log65=n則log25用m,n表示為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,設(shè)直線(xiàn)l:kx-y+1=0與圓C:x2+y2=4相交于A(yíng)、B兩點(diǎn),以O(shè)A、OB為鄰邊作平行四邊形OAMB,若點(diǎn)M在圓C上,則實(shí)數(shù)k等于(  )
A、1B、2C、0D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)l:x+
3
y-4=0與圓C:x2+y2=4的位置關(guān)系是( 。
A、相交過(guò)圓心B、相交不過(guò)圓心
C、相切D、相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
3
sinx+cosx(x∈R),函數(shù)y=f(x+φ)的圖象關(guān)于直線(xiàn)x=0對(duì)稱(chēng),則φ的值可以是( 。
A、
π
2
B、
π
3
C、
π
4
D、
π
6

查看答案和解析>>

同步練習(xí)冊(cè)答案