在△ABC中,若AB⊥AC,AD⊥BC于D,則
1
AD2
=
1
AB2
+
1
AC2
.在四面體A-BCD中,若AB,AC,AD兩兩垂直,AH⊥底面BCD,垂足為H,則類(lèi)似的結(jié)論是什么?并說(shuō)明理由.
分析:利用平面中的射影定理證明;將平面中的三角形類(lèi)比成空間的三棱錐,三角形的兩邊垂直類(lèi)比成三棱錐的三棱垂直,得到類(lèi)比性質(zhì)通過(guò)作輔助線將空間的證明問(wèn)題轉(zhuǎn)化為三角形中的性質(zhì).
解答:解:類(lèi)似的結(jié)論是:如圖,在四面體A-BCD中,若AB,AC,AD兩兩垂直,AH⊥底面BCD,垂足為H,則
1
AH2
=
1
AB2
+
1
AC2
+
1
AD2
.                    …(4分)
證明如下:
連接BH并延長(zhǎng)交CD于E,連接AE.∵AB,AC,AD兩兩垂直,
∴AB⊥平面ACD.又∵AE?平面ACD,∴AB⊥AE.
在Rt△ABE中,有
1
AH2
=
1
AB2
+
1
AE2
.     ①…(8分)
又易證CD⊥AE,
∴在Rt△ACD中,
1
AE2
=
1
AC2
+
1
AD2
. ②…(10分)
將②代入①得 
1
AH2
=
1
AB2
+
1
AC2
+
1
AD2
.…(12分)
點(diǎn)評(píng):本題考查利用類(lèi)比推理得到結(jié)論、證明類(lèi)比結(jié)論時(shí)證明過(guò)程與其類(lèi)比對(duì)象的證明過(guò)程類(lèi)似或直接轉(zhuǎn)化為類(lèi)比對(duì)象的結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,若
AB
AC
=
BA
BC
,則△ABC的形狀是( 。
A、直角三角形
B、正三角形
C、等腰三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若
AB
AC
=
AB
CB
=4
,則邊AB的長(zhǎng)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)如圖,平行四邊形ABCD中,M、N分別為DC、BC的中點(diǎn),已知
AM
=
c
、
AN
=
d
,試用
c
、
d
表示
AB
AD

(2)在△ABC中,若
AB
=
a
,
AC
=
b
若P,Q,S為線段BC的四等分點(diǎn),試證:
AP
+
AQ
+
AS
=
3
2
(
a
+
b
)
;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)結(jié)論:
①?x∈R,2x>x2
②“若x2<1,則-1<x<1”的逆否命題是“若-1<x<1,則x2≥1”;
③要得到y(tǒng)=cos2x的圖象,只需要將y=sin(2x+
π
4
)的圖象向左平移
π
8
個(gè)單位;
④在△ABC中,若
AB
CA
>0,則∠A為銳角;
⑤函數(shù)f(x)=sin(2x+
π
3
)在[0,
π
12
]上是增函數(shù),在[
π
12
,
π
2
]上是減函數(shù).
其中正確結(jié)論的序號(hào)是
③⑤
③⑤
.(填寫(xiě)你認(rèn)為正確的所有結(jié)論序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
(1)設(shè)
a
、
b
都是非零向量,則“
a
b
=±|
a
|•|
b
|
”是“
a
、
b
共線”的充要條件
(2)將函數(shù)y=sin(2x+
π
3
)的圖象向右平移
π
3
個(gè)單位,得到函數(shù)y=sin2x的圖象;
(3)在△ABC中,若AB=2,AC=3,∠ABC=
π
3
,則△ABC必為銳角三角形;
(4)在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn);
其中正確命題的序號(hào)是
(1)(3)
(1)(3)
(寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案