把函數(shù)y=
2x-1
3
的圖象按a=(-1,2)平移到F′,則F′的函數(shù)解析式為( 。
A、y=
2x+7
3
B、y=
2x-5
3
C、y=
2x-9
3
D、y=
2x+3
3
分析:本題考查的是圖象變換和向量知識的綜合應(yīng)用類問題.在解答時首先要講向量轉(zhuǎn)化為函數(shù)左右上下平移的問題,然后結(jié)合平移的規(guī)律即可獲得問題的解答.
解答:解析:把函數(shù)y=
2x-1
3
的圖象按a=(-1,2)平移到F′,
則F′的函數(shù)解析式為A,即按圖象向左平移1個單位,用(x+1)換掉x,
再把圖象向上平移2個單位,用(y-2)換掉y,可得y-2=
2(x+1)-1
3

整理得y=
2x+7
3

故選A.
點評:本題考查的是圖象變換和向量知識的綜合應(yīng)用類問題.在解答的過程當(dāng)中充分體現(xiàn)了向量的知識、平移變換的知識以及問題轉(zhuǎn)化的思想.值得同學(xué)們體會和反思.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列四種說法:
(1)不等式(x-1)
x2-x-2
0的解集為[2,+∞);
(2)若a,b∈R,則“l(fā)og3a>log3b”是“(
1
3
)a<(
1
3
)b
”成立的必要不充分條件;
(3)把函數(shù)y=sin(-2x)(x∈R)的圖象上所有的點向右平移
π
8
個單位即可得到函數(shù)
y=sin(-2x+
π
4
)(x∈R)
的圖象;
(4)函數(shù)f(x)=log
1
2
(x2+ax+2)
的值域為R,則實數(shù)a的取值范圍是(-2
2
,2
2
).
其中正確的說法有(  )
A、.1個B、2個
C、3個D、.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四種說法:
(1)命題“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”.
(2)若a,b∈R,則“l(fā)og3a>log3b”是“(
1
3
)a<(
1
3
)b
”的必要不充分條件
(3)把函數(shù)y=sin(-2x)(x∈R)的圖象上所有的點向右平移
π
8
個單位即可得到函數(shù)y=sin(-2x+
π
4
)(x∈R)
的圖象.
(4)若四邊形ABCD是平行四邊形,則
AB
=
DC
,
BC
=
DA

(5)兩個非零向量
a
,
b
互相垂直,則|
a
| 2+|
b
|2=(
a
+
b
)2

其中正確說法個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于下列命題:
①函數(shù)f(x)=loga(x-2)-1(a>0,a≠1)的圖象恒過定點(3,-1);
②若函數(shù)y=f(x+1)的定義域是[-1,1],則y=f(x)的定義域是[-2,0];
③若函數(shù)y=f(x)是奇函數(shù),當(dāng)x<0時,f(x)=x2+5x,則f(2)=6
④設(shè)α∈{-1,
1
3
1
2
,1,2,3}
,則使冪函數(shù)y=xα為奇函數(shù)且在(0,+∞)上單調(diào)遞增的α值的個數(shù)為3個
⑤若函數(shù)y=|2x-1|-m(m∈R)只有一個零點,則m≥1
其中正確的命題的序號是
①③⑤
①③⑤
( 注:把你認(rèn)為正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列四種說法:
(1)命題“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”.
(2)若a,b∈R,則“l(fā)og3a>log3b”是“(
1
3
)a<(
1
3
)b
”的必要不充分條件
(3)把函數(shù)y=sin(-2x)(x∈R)的圖象上所有的點向右平移
π
8
個單位即可得到函數(shù)y=sin(-2x+
π
4
)(x∈R)
的圖象.
(4)若四邊形ABCD是平行四邊形,則
AB
=
DC
,
BC
=
DA

(5)兩個非零向量
a
,
b
互相垂直,則|
a
| 2+|
b
|2=(
a
+
b
)2

其中正確說法個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案